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BACKGROUND
• In dialog data targets to the same input vary semantically (one-to-many) [Wei et al., 2017].
•Generic responses that appear in a diverse set of contexts (many-to-one) [Wu et al., 2018].
Previous approaches to these issues:
• Feeding extra information to dialog models [Li et al., 2016b].
•Augmenting the model or decoding process [Shao et al., 2017].
•Modifying the loss function [Li et al., 2016a].

METHODS
IDENTITY approach:
• Filter utterances from datasets in the one-to-many, many-to-one categories.
• Remove high entropy utterances (paired with diverse sources/targets), based on the conditional
probabilities of utterance pairs in the data (Figure 1).

• 3 filtering ways: SOURCE (utterance pairs with a high entropy source), TARGET (pairs with a high
entropy target), BOTH (union of SOURCE and TARGET).
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Figure 1: A high/low entropy (top/bottom) source utterance (left) and response (right). Numbers
represent conditional probabilities.

SENT2VEC and AVG-EMBEDDING approach:
• Cluster utterances with Mean Shift [Fukunaga and Hostetler, 1975]. Sentence representations:
SENT2VEC [Pagliardini et al., 2018], AVG-EMBEDDING [Arora et al., 2017].

• Entropy at the cluster level, filtering clusters instead of individual utterances.
• A high entropy cluster groups similar utterances paired with diverse sources/targets (Figure 2).
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Figure 2: A high/low entropy (top/bottom) source cluster (left) and target cluster (right). Numbers
represent conditional probabilities.

METRICS
• Length: Number of words in the response.
• Entropy: Per-word, per-bigram and utterance entropy of responses [Serban et al., 2017]. We also
introduce the KL divergence between model and ground truth response sets.

• Embedding: Embedding average, extrema, greedymetrics measuring the similarity between response
and target word embeddings [Liu et al., 2016].

• Coherence: Similarity between input and response word embeddings [Xu et al., 2018].
•Distinct: Distinct-1 and distinct-2measure the ratio of unique unigrams/bigrams to the total number
of unigrams/bigrams in a set of responses [Li et al., 2016a].

• BLEU: N-gram overlap between response and target [Papineni et al., 2002].
Experimental setup:
•Model: transformer [Vaswani et al., 2017].
•Dataset: DailyDialog [Li et al., 2017]. Evaluations on Twitter and Cornell data in the paper.
•Data filtered: 5-15% depending on filtering method.
•Decoding: Greedy, better than beam search on all metrics [Tandon et al., 2017].

•Many automatic metrics correlate badly with human judgment [Liu et al., 2016].
• Responses at the validation loss minimum are often qualitatively worse than after overfitting
[Csaky, 2019, Tandon et al., 2017].

•We observed that all metrics perform much better after the model overfitted according to the loss
function (Figure 3). Metrics saturate and don’t decrease even after 640 epochs.

Figure 3: Embedding metrics and coherence on validation data (left) and training and validation loss
(right) as a function of the training evolution of transformer on unfiltered data.

EXPERIMENTS
•Metrics on the unfiltered test set after 150 epochs of training.
• TRF = baseline transformer, ID = IDENTITY, AE = AVG-EMBEDDING, SC = SENT2VEC.
• SOURCE, TARGET, BOTH filtering denoted by initials.
•GT = ground truth responses, RT = random responses from the training set.
• The 17 metrics from left to right: response length, unigram and bigram entropy, unigram and bi-
gram utterance entropy, unigram and bigram KL divergence, embedding average, extrema greedy,
coherence, distinct-1 and distinct-2, BLEU-1, BLEU-2, BLEU-3, BLEU-4.
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AVG EXT GRE COH d1 d2 b1 b2 b3 b4

TRF 11.5 7.98 13.4 95 142 .0360 .182 .655 .607 .640 .567 .0465 .297 .333 .333 .328 .315

ID

B 13.1 8.08 13.6 107 162 .0473 .210 .668 .608 .638 .598 .0410 .275 .334 .340 .339 .328
T 12.2 8.04 13.6 100 150 .0335 .181 .665 .610 .640 .589 .0438 .289 .338 .341 .339 .328
S 12.3 7.99 13.5 101 153 .0406 .187 .662 .610 .641 .578 .0444 .286 .339 .342 .338 .326

AE

B 11.9 7.98 13.5 98 147 .0395 .197 .649 .600 .628 .574 .0434 .286 .318 .321 .318 .306
T 12.5 7.99 13.5 102 155 .0436 .204 .656 .602 .634 .580 .0423 .279 .324 .327 .325 .313
S 12.1 7.93 13.4 99 148 .0368 .186 .658 .605 .636 .578 .0425 .278 .325 .328 .324 .311

SC

B 12.8 8.07 13.6 105 159 .0461 .209 .655 .600 .629 .583 .0435 .282 .322 .328 .327 .316
T 13.0 8.06 13.6 107 162 .0477 .215 .657 .602 .632 .585 .0425 .279 .324 .330 .329 .318
S 12.1 7.96 13.4 100 150 .0353 .183 .657 .606 .638 .576 .0443 .286 .331 .333 .329 .317

RT 13.5 8.40 14.2 116 177 .0300 .151 .531 .452 .481 .530 .0577 .379 .090 .121 .130 .125
GT 14.1 8.39 13.9 122 165 0 0 1 1 1 .602 .0488 .362 1 1 1 1

Top 20 high entropy source utterances found by IDENTITY:
yes. | thank you. | why? | here you are. | ok. | what do you mean? | may i help you? | can i help you?
| really? | sure. | what can i do for you? | why not? | what? | what happened? | anything else? | thank
you very much. | what is it? | i see. | no. | thanks.
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