Filtering generic utterances

from data using entropy-based

methods improves response quality.

17 metrics on 3 datasets.

Overfitting on cross-entropy **loss**

Better on automatic metrics

Paper: arxiv.org/abs/1905.05471

Filtering Code: github.com/ricsinaruto/Seq2seqChatbots

Evaluation Code: github.com/ricsinaruto/dialog-eval

Improving Neural Conversational Models with Entropy-Based Data Filtering

Richard Csaky¹, Patrik Purgai¹, Gabor Recski^{1,2} ¹Department of Automation and Applied Informatics, Budapest University of Technology and Economics ²Apollo.Al

BACKGROUND

• In dialog data targets to the same input vary semantically (*one-to-many*) [Wei et al., 2017]. • Generic responses that appear in a diverse set of contexts (*many-to-one*) [Wu et al., 2018]. **Previous approaches** to these issues:

- Feeding extra information to dialog models [Li et al., 2016b].
- Augmenting the model or decoding process [Shao et al., 2017].
- Modifying the **loss** function [Li et al., 2016a].

METHODS

IDENTITY approach:

- Filter utterances from datasets in the one-to-many, many-to-one categories.
- Remove high entropy utterances (paired with diverse sources/targets), based on the conditional probabilities of utterance pairs in the data (Figure 1).
- 3 filtering ways: SOURCE (utterance pairs with a high entropy source), TARGET (pairs with a high

METRICS

- Length: Number of words in the response.
- Entropy: Per-word, per-bigram and utterance entropy of responses [Serban et al., 2017]. We also introduce the KL divergence between model and ground truth response sets.
- **Embedding**: Embedding *average*, *extrema*, *greedy* metrics measuring the similarity between response and target word embeddings [Liu et al., 2016].
- Coherence: Similarity between input and response word embeddings [Xu et al., 2018].
- **Distinct**: Distinct-1 and distinct-2 measure the ratio of unique unigrams/bigrams to the total number of unigrams/bigrams in a set of responses [Li et al., 2016a].
- **BLEU**: N-gram overlap between response and target [Papineni et al., 2002].

Experimental setup:

- Model: transformer [Vaswani et al., 2017].
- **Dataset**: DailyDialog [Li et al., 2017]. Evaluations on Twitter and Cornell data in the paper.
- Data filtered: 5-15% depending on filtering method.
- **Decoding**: Greedy, better than beam search on all metrics [Tandon et al., 2017].
- Many automatic **metrics** correlate badly with **human judgment** [Liu et al., 2016].
- Responses at the validation loss minimum are often qualitatively worse than after overfitting [Csaky, 2019, Tandon et al., 2017].
- We observed that all **metrics** perform much **better after** the model **overfitted** according to the loss function (Figure 3). Metrics saturate and don't decrease even after 640 epochs.

Figure 1: A high/low entropy (top/bottom) source utterance (left) and response (right). Numbers represent conditional probabilities.

SENT2VEC and AVG-EMBEDDING approach:

- Cluster utterances with Mean Shift [Fukunaga and Hostetler, 1975]. Sentence representations: SENT2VEC [Pagliardini et al., 2018], AVG-EMBEDDING [Arora et al., 2017].
- Entropy at the cluster level, filtering clusters instead of individual utterances.
- A high entropy cluster groups similar utterances paired with diverse sources/targets (Figure 2).

cluster:34	Played poker	Whore are	cluster:49
What have	with my work		

Figure 3: Embedding metrics and coherence on validation data (left) and training and validation loss (right) as a function of the training evolution of transformer on unfiltered data.

EXPERIMENTS

- Metrics on the unfiltered test set after 150 epochs of training.
- TRF = baseline transformer, **ID** = IDENTITY, **AE** = AVG-EMBEDDING, **SC** = SENT2VEC.
- SOURCE, TARGET, BOTH filtering denoted by initials.
- **GT** = ground truth responses, **RT** = random responses from the training set.
- The 17 metrics from left to right: response length, unigram and bigram entropy, unigram and bigram utterance entropy, unigram and bigram KL divergence, embedding average, extrema greedy, coherence, *distinct-1* and *distinct-2*, BLEU-1, BLEU-2, BLEU-3, BLEU-4.

Figure 2: A high/low entropy (top/bottom) source cluster (left) and target cluster (right). Numbers represent conditional probabilities.

	U	H_w^u	H^b_w	H^u_u	H^b_u	D_{kl}^{u}	D_{kl}^b	AVG	EXT	GRE	COH	d1	d2	b1	b2	b3	b4
TRF	11.5	7.98	13.4	95	142	.0360	.182	.655	.607	.640	.567	.0465	.297	.333	.333	.328	.315
B T S	13.1	8.08	13.6	107	162	.0473	.210	.668	.608	.638	.598	.0410	.275	.334	.340	.339	.328
	12.2	8.04	13.6	100	150	.0335	.181	.665	.610	.640	.589	.0438	.289	.338	.341	.339	.328
	12.3	7.99	13.5	101	153	.0406	.187	.662	.610	.641	.578	.0444	.286	.339	.342	.338	.326
B T S	11.9	7.98	13.5	98	147	.0395	.197	.649	.600	.628	.574	.0434	.286	.318	.321	.318	.306
	12.5	7.99	13.5	102	155	.0436	.204	.656	.602	.634	.580	.0423	.279	.324	.327	.325	.313
	12.1	7.93	13.4	99	148	.0368	.186	.658	.605	.636	.578	.0425	.278	.325	.328	.324	.311
В Т	12.8	8.07	13.6	105	159	.0461	.209	.655	.600	.629	.583	.0435	.282	.322	.328	.327	.316
	13.0	8.06	13.6	107	162	.0477	.215	.657	.602	.632	.585	.0425	.279	.324	.330	.329	.318
S	12.1	7.96	13.4	100	150	.0353	.183	.657	.606	.638	.576	.0443	.286	.331	.333	.329	.317
RT	13.5	8.40	14.2	116	177	.0300	.151	.531	.452	.481	.530	.0577	.379	.090	.121	.130	.125
GT	14.1	8.39	13.9	122	165	0	0	1	1	1	.602	.0488	.362	1	1	1	1

Top 20 high entropy source utterances found by IDENTITY:

yes. | thank you. | why? | here you are. | ok. | what do you mean? | may i help you? | can i help you? | really? | sure. | what can i do for you? | why not? | what? | what happened? | anything else? | thank you very much. | what is it? | i see. | no. | thanks.