Improving Neural Conversational Models
with Entropy-Based Data Filtering

METRICS

e Length: Number of words in the response.

e Entropy: Per-word, per-bigram and utterance entropy of responses [Serban et al., 2017]. We
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BACKGROUND

also introduce the KL divergence between model and ground truth response sets.
Fi Ite ri n g ge n e r-i C utte ra n CeS frO m e Embedding: Embedding average, extrema, greedy metrics measuring the similarity between

response and target word embeddings [Liu et al., 2016].
e Coherence: Similarity between input and response word embeddings [Xu et al., 2018].

e Distinct: Distinct-1 and distinct-2 measure the ratio of unique unigrams/bigrams to the total

e In dialog data targets to the same input vary semantically (one-to-many) [Wei et al., 2017]. number of unigrams/bigrams in a set of responses [Li et al., 2016a].

data using entropy-based meth-

e Generic responses that appear in a diverse set of contexts (many-to-one) [Wu et al., 2018]. e BLEU: N-gram overlap between response and target [Papineni et al., 2002].

Previous approaches to these issues: Experimental setup:

e Feeding extra information to dialog models [Li et al., 2016b]. e Model: transformer [Vaswani et al., 2017].

e Augmenting the model or decoding process [Shao et al., 2017].
e Modifying the loss function [Li et al., 2016a].

METHODS

e Dataset: DailyDialog [Li et al., 2017]. Evaluations on Twitter and Cornell data in the paper.
e Data filtered: 5-15% depending on filtering method.
e Decoding: Greedy, better than beam search on all metrics [Tandon et al., 2017].

ods improves response quality.

e Many automatic metrics correlate badly with human judgment [Liu et al., 2016].

17 metrics on 3 datasets.

e Responses at the validation loss minimum are often qualitatively worse than after overfitting
[Csaky, 2019, Tandon et al., 2017].
e \We observed that all metrics perform much better after the model overfitted according to

IDENTITY approach:

e Filter utterances from datasets in the one-to-many, many-to-one categories.

e Remove high entropy utterances (paired with diverse sources/targets), based on the condi-
tional probabilities of utterance pairs in the data (Figure 1). the loss function (Figure 3). Metrics saturate and don't decrease even after 640 epochs.

e 3 filtering ways: SOURCE (utterance pairs with a high entropy source), TARGET (pairs with a high
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entropy target), BOTH (union of SOURCE and TARGET).
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Figure 1: A high/low entropy (top/bottom) source utterance (left) and response (right). Numbers

Better on automatic metrics

represent conditional probabilities.

EXPERIMENTS

e Metrics on the unfiltered test set after 150 epochs of training.

e TRF = baseline transformer, ID = IDENTITY, AE = AVG-EMBEDDING, SC = SENT2VEC.
e SOURCE, TARGET, BOTH filtering denoted by initials.

e GT = ground truth responses, RT = random responses from the training set.

SENT2VEC and AVG-EMBEDDING approach:

e Cluster utterances with Mean Shift [Fukunaga and Hostetler, 1975]. Sentence representa-
tions: SENT2VEC [Pagliardini et al., 2018], AVG-EMBEDDING [Arora et al., 2017].

e Entropy at the cluster level, filtering clusters instead of individual utterances. , , , , ,

e The 17 metrics from left to right: response length, unigram and bigram entropy, unigram and

¢ A high entropy cluster groups similar utterances paired with diverse sources/targets (Figure 2). bigram utterance entropy, unigram and bigram KL divergence, embedding average, extrema
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