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Kivonat

Az IT iparban az alkatrészek mérete egyre kisebb és kisebb, hogy minél nagyobb
sűrűséggel lehessen őket integrálni a termékekbe. Moore törvénye szerint a tranzisz-
torok száma másfél évenként megkettőződik egy azonos nagyságú processzorban. E
jelenség miatt a jövő tranzisztorai olyan kicsik lesznek, hogy gyártásuk nehézkes lesz
különböző kvantum fizikai jelenségek figyelembe vétele nélkül.

Már most sok más módszert tesztelnek a kutatók mellyel a tranzisztort helyettesí-
teni lehetne. Az egyik ilyen módszer a molekuláris számítógép, melyben molekulák
látják el a tranzisztorok feladatát. Egy lehetséges molekula erre a célra a Dronpa, mely
egy mesterséges fehérje. Ez és más hasonló tulajdonságú fehérjék képesek rá kapcsolt
elektromos tér által generált jelek továbbítására környező molekulákra dipól-dipól csa-
tolás segítségével. Kedvező tulajdonságaik közé tartozik még, hogy az elektromos jelet
képesek terahertz nagyságrendű frekvenciával továbbítani, valamint kisebb teljesít-
ményfelvételűek és disszipációjúak mint a tranzisztor. E tulajdonságokat felhasználva
megmutatjuk, milyen módon tudnák helyettesíteni a tranzisztort a fehérjék digitális
áramkörökben, és hogyan valósíthatóak meg különböző logikai áramkörök molekulák
segítségével.

A szemléletes és átlátható szimulálás érdekében megalkottunk egy programot, 3D-s
grafikai felülettel, melybe integráltuk a fehérjék viselkedését leíró egyenleteteket. A
program segítségével könnyen meg lehet adni molekuláris struktúrákat és elektromos
tereket, és ezek viselkedését is lehet vizsgálni illetve szimulálni bizonyos egyszerű-
sítések mellett. Továbbá bemutatunk egy algoritmust mely segítségével a program
magától képes egyszerűbb, logikai függvényeket megvalósító struktúrák megkeresé-
sére a megadott bemeneti és kimeneti feltételeket figyelembe véve.

Az algoritmus és szimuláció segítségével bemutatunk pár egyszerűbb logikai kaput
és logikai függvényt megvalósító molekuláris struktúrát. E struktúrák viselkedésének
vizsgálatát oly módon végezzük el, hogy párhuzamokat állítunk fel a most is használt
tranzisztoros és a molekuláris logika között, ez által szemléltetve miként lehetne hasz-
nálni a Dronpa, és más hasonló tulajdonságú fehérjét digitális logika megvalósítására.



Abstract

In the IT industry the size of electronic components is constantly shrinking in order
to integrate them with greater density in laptops, phones or other products. According
to Moore’s law the number of transistors occupying the same space in a processor is
doubling every 18 months. Because of this phenomenon the transistors of the future will
have to be so small, that their manufacturing will become nearly impossible without
taking into consideration quantum physical phenomena.

Already a great number of approaches to replace transistors with something else are
being researched and talked about by scientists. One such way is the molecular com-
puter, where special molecules take care of the transistor’s duties. A possible candidate
is the molecule named Dronpa, an artificial protein. This, and other similar proteins
have the ability to transmit electric field-induced signals to other nearby molecules
with the aid of dipole-dipole coupling. Among their beneficial properties is the ability
to transmit signals in the terahertz frequency regime, and lower power consumption
and dissipation than transistors. Using these qualities we show how a transistor can
be replaced by these proteins, and how various logic circuits can be achieved with the
help of molecules.

In order for the simulations to be clear and visual we created a program containing
a 3D graphical interface, and we integrated the equations which describe these pro-
teins into the program. With the help of this program defining molecular structures
and electric fields becomes an easy task, as well as, using some simplifications, ex-
amining and simulating the behaviour of such structures. Furthermore we present an
algorithm which can be used to find smaller molecular structures that realize desired
logic operations, by defining the required input and output conditions.

With the help of the algorithm and the simulations we present logic gates and a
couple of easier logic functions, realized by molecular structures. The studying of the
behaviour of such structures is done by correlating between present transistor logic and
dipole-dipole coupled molecular logic, thus showing how Dronpa and other similar
proteins can be used to accomplish digital logic.
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1 Introduction

In this chapter we give a short introduction of the Dronpa protein, and discuss the
reasons and benefits of our program.

1.1 Why are Dronpa and proteins in general important

New computing methods are needed more than ever, now that the transistor is reaching
its theoretical size limit, thus making it impossible to further increase the density of
microelectronic circuits. Novel technologies to replace transistors are researched more
and more. DNA-based computing architectures have been proposed before [1].

Proteins are potentially promising candidates to serve as the building blocks of novel
computing architectures. Their benefits from our point of view include low cost, wide
variety, and that they can be engineered in order to provide desirable properties [2, 3].
A promising solution for the integration of molecular devices is Coulomb coupling,
and this is our main focus as well [4, 5, 6, 7, 8, 9]. Theoretical proposals for both electric
field and photon pulse-driven solutions for the realization of Coulomb coupled protein
logic circuits have been offered before [2, 3].

Dronpa is a special artificial protein, and already several simulations were per-
formed on it [10, 11]. These showed that electric fields induce a proportional change
in the protein’s dipole moment. Dronpa molecules placed next to each other transmit
electric field induced dipole moment change in an inverting way [12]. Another im-
portant property is the memory, meaning that after the electric field used is turned off,
the dipole value won’t return to its initial value [12]. Furthermore the size of a Dronpa
protein is less than that of the smallest transistor today, and it has been shown through
simulations that it can reach switching frequencies in the terahertz range [12]. These
and other qualities show that Dronpa and other proteins which have good polarizing
qualities are good candidates to replace transistors.
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Figure 1.1: Comparing the sizes of Dronpa and the smallest Intel transistor [13]

1.2 NAMD

NAMD is a parallel molecular dynamics code designed for high-performance simu-
lation of large biomolecular systems [14]. The simulations that we used to check the
validity of our own program were also run using NAMD [12]. The software is great for
detailed molecular simulations, but it lacks an actual graphical user interface. VMD
can be used to visualize the results of NAMD simulations, the picture in Section 1.1
was also taken in VMD [15]. In Section 2.1 we show more simulation results on Dronpa
done with NAMD. A problem with the program is that it’s too detailed for our needs,
and takes a relatively long time to simulate the effect of an electric field even on only
1 protein. We don’t really need to simulate the proteins in detail since we have the
differential equations, with which we can describe the behaviour of Dronpa in a simple,
compact form, further described in Section 2.2 [16]. NAMD is a very powerful program
but it lacks user-friendly tools, and it isn’t specific enough for Dronpa simulations, thus
we decided to make our own simulation software. Since we built our on program for
the specific task it can simulate the effect of an electric field on a protein in less than 1
second.

1.3 The reasons behind the need of our program

As described in the previous section we decided to build our own simulation program.
This is beneficial since we can make it as specific as we want to the Dronpa molecule,
thus only including equations and functions that are necessary, effectively making
the program much faster than other simulation software. This is partly due to our
approach to base the entire simulation on the differential equations that describe the
behaviour of Dronpa and similar proteins with great accuracy [16]. Obviously our
program can be used in general to simulate other proteins as well, which might even
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have better polarizability properties, but we focused on Dronpa since the constants
used in the equations were already at hand. Another important aspect is the 3D
graphical interface, which other simulation programs might lack, making the building
of molecular structures very user-friendly, and visually pleasing. In the following
chapters, after giving a basic theoretical background we discuss the challenges that we
faced while building this program, and how we overcame them. Scalability and ease
of use were the primary focus points when deciding what shape the program should
take.
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2 Background

In this chapter we are going to give a basic background of Dronpa, its properties and
behaviour. A brief summary of the equations needed for simulation will also be given.

2.1 Dronpa Properties

As mentioned in the introduction we can load an electric field to a protein, and its
dipole moment will react to it.

Figure 2.1: Electric field-induced response of Dronpa [12]

When a protein is affected by an electric field, its shape and dipole moment will
change as shown in Figure 2.1. The protein has a viscoelastic property, meaning that
after we turn off the electric field this part will completely reset. In the figure above
however after turning off the electric field at 44 ps, the protein’s dipole moment value
does not reset completely, showing that it also has a viscoplastic property, which acts
as some kind of memory [12]. These properties can be modelled using differential
equations [16]. These equations are the mathematical model of the circuit analogy, and
can be used for any protein that behaves similarly [12].
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Figure 2.2: Comparison between NAMD and Matlab (using the differential equations)
simulation results [16]
dotted line – Matlab

continuous line – NAMD

With the help of these equations we can closely approximate the behaviour of
Dronpa as shown in Figure 2.2. Furthermore these equations are easy to implement
into the program. Another benefit is that we don’t have to use the electronic circuit
analogy, thus using directly electric fields, and dipole moments in the differential
equations described in Section 2.2.

2.2 Basic Equations

In this subsection we give a short description of the equations on which we based our
simulation program. These are able to accurately describe the behaviour of Dronpa
proteins when subjected to external electric fields. The model is not necessarily spe-
cific to Dronpa, and can be used for other coulomb coupled proteins, since it is the
mathematical model of the circuit analogy discussed in [12].

2.2.1 Electric field interactions

After turning on an electric field on the protein, its dipole moment changes according
to

µ = µ0 + αE, (1)

where µ0 is the dipole moment of the protein prior to the external electric field, µ is
its dipole moment during the influence of field E, and α is its polarizability [16].
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If the dipole moments of neighbouring proteins are parallel to each other, the mag-
nitude of electric field E at the protein induced by its neighbour is

E =
µ

4πε0r3 , (2)

where µ is the dipole moment of the neighbouring protein and r is the distance
between the protein and its neighbour [16]. In our simulations we used the physically
lowest possible distance of 7 nm, and we applied electric fields in only 1 direction, thus
the dipole moment of all the proteins also changes only in 1 direction.

If the dipole moment is given in Debyes and the electric field in kcal/(molÅe), then
using the above equation we can calculate the following K constant

E = Kµ (3)

K = 0.07 · 343
[

kcal
D ·molÅe

]
.

We implement this K constant with a negative sign in the program, because of the
inverting nature of Dronpa. This constant represents the dipole-dipole interaction of
the proteins, meaning that it is the factor by which a protein’s dipole moment creates
an electric field, which changes the neighbour’s dipole moment.

2.2.2 Differential equations

The following equations are quoted [16].

The dipole moment can be calculated by the following equation

µx(t) = µex(t) + µpx(t) + µ0x (4)

whereµx is the x component of the dipole moment of the protein during the influence
of the field E. µex is the viscoelastic-like change and µpx is the viscoplastic-like change
of the x component of the dipole moment. µ0x is the x component of the dipole moment
of the protein prior to the application of the external electric field.

The viscoelastic µex part, due to the x component of the external electric field, Ex can
be expressed by

dµex(t)
dt

+
µex(t)

Ce1xCe2x
=

Ex(t)
Ce1x

. (5)

where Ce1x, and Ce2x constants can be determined from the electric field-induced
response of the protein in question obtained either experimentally or with the aid of a
molecular dynamics simulation software (see values later).

The viscoplastic µpx = µpx1 +µp2x part, due to the same electric field can be expressed
by



2 BACKGROUND Page 9

dµp1x(t)
dt

+ Ax
µp1x(t)

Cp1xCp2x
= Ax

Ex(t)
Cp1x

, (6)

where

Ax =
1
2

(
sign

(
Ex(t) − µp1x(t)/Cp2x

)
+ abs

(
sign

(
Ex(t) − µp1x(t)/Cp2x

)))
, (7)

and

dµp2x(t)
dt

+ Bx
µp2x(t)

Cp1xCp2x
= Bx

Ex(t)
Cp1x

, (8)

where

Bx =
1
2

(
abs

(
sign

(
Ex(t) − µp2x(t)/Cp2x

))
− sign

(
Ex(t) − µp2x(t)/Cp2x

))
. (9)

The Cp1x, and Cp2x constants can be obtained from the electric field-generated char-
acteristics of the molecule, as well.

For the Ce1x,Ce2x,Cp1x,Cp2x constants we used the following values [16].

Ce1x = 0.008 (ps · kcal)/(D ·molÅe)
Cp1x = 0.037 (ps · kcal)/(D ·molÅe)
Ce2x = 180 (D ·molÅe)/(kcal)
Cp2x = 153 (D ·molÅe)/(kcal)

The exact equations used in the program are given in Section 3.3.
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3 Program

In this chapter we will talk about the logical, structural and graphical build-up of our
program, discussing the modified equation which we used as well. We also explain
simulation and other algorithms in detail. Furthermore we present a short user manual
to explain and help navigate the program’s features.

3.1 Logical and Structural build-up part of the program

This subsection focuses on the core of our program, the system of handling the proper-
ties of examined molecules. We wrote our whole program in C++, and used Microsoft
Visual Studio Enterprise 2015 for editing and debugging [17].

3.1.1 Handling the molecules

To be able to try several molecular structures, we needed a way to store their place
and actual dipole moment in every step of the simulation. Therefore we needed the
variables double dip, and double dipA, dipB (the reason for these two will be explained in
Section 3.4).

We had the variables for simulation, but we needed to separate them for each and
every molecule. For this purpose the easiest and most organized way is to pack the
values belonging together in one object, so we defined class molekula.

In order to make enough objects for all proteins we decided to declare a three-
dimensional array of the class (molekula[36][36][36]), so we could identify all molecules
individually. However, we didn’t need every one of the 46656 molecules in all cases,
therefore we definitely needed one more variable in the class, which indicates if at a
certain place there really exists an initialized molecule or just empty space for it. This
variable is the bool van.

We needed only one last variable, which would show whether there is an external
electric field on the protein (electric field values are set in a different part of the program).
In the class this variable is the bool ter.

Ultimately, for changing the structure or the values of a protein’s variables we would
use external functions, hence every variable in the class had to be public. Finally the
definition of the class is:

class molekula
{
public:

bool van;
bool ter;
double dipA, dipB, dip;

};
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The class for the molecules was made, but it still did not do anything. So like in
any program, we needed functions, which would modify the objects – these are just
mentioned in this section, and are explained in other sections.

The most important function of the program is the futas. It’s called with the r key,
and it simulates the structure, calculates the dipole moments, and creates the data
file. It uses the modified equations, discussed in Section 3.3, and works exactly as it is
written in Section 3.4.

The other two functions mentioned here are the save and load functions. In brief,
with these one can save and load a given molecular structure to a file, so they can
later run simulations on the same system. These functions are explained in detail in
Section 3.6.

3.2 Graphical build-up part of the program

All the graphical parts of the program, as well as the interface were programmed using
OpenGL 2.1 Glut, specifically the freeglut version [18]. All the OpenGL code was written
in C language. In the subsections below we discuss the several parts which make up
the graphical part of the program.

3.2.1 Basic Setup

Our basic setup of the .c and .h files follows the setup done in this github code [19].
Furthermore the basic setup of the scene, the camera rotation and movement, and the
printing on screen was also coded accordingly to the github code. In the main() function
we only initialize the Glut window, some opengl functions, our objects, and our global
variables.

The display.c file contains important opengl functions which draw the scene, set up
the camera, and the field of view, as well as deal with the reshaping of the window. The
most important function here is glutPostRedisplay(), which has to be called whenever
the scene drawing is changed.

In print.c the main print function is declared, which we can call to easily print
characters directly on the window. This is done through glutBitmapCharacter(), and it
basically allows to use the print() function as a normal C printing function.

In interaction.c all the keyboard and mouse interaction functions are declared. This
is also the file where we declare all our own functions, like the simulation and the
searching algorithm.

3.2.2 Draw.c

In this file, everything that needs to be drawn in the scene is declared. The light
is drawn here in the drawLight() function. drawParameters() contains the drawing of
print() bitmap characters. In the drawAxes() function place-holder black cubes are
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drawn. The drawCube() function has a cube object input, and draws the specific cube if
it was initialized.

The drawScene() function calls all the previously mentioned drawing functions. Also
if the coordinate input counter reaches 3 it will initialize a cube for the given coordinates,
through the InitializeObjs() function.

3.2.3 Shapes.c and Textures.c

In the Textures.c file a special function is used, which transforms 256x256 pixel or smaller
.gif pictures into usable texture objects by Opengl [19]. This is very important because
the specifying of coordinates is greatly simplified by these textures. We created 36 .gif
pictures of the numbers from 0 to 9, and of the characters from a to z. These textures
mapped on the cubes, so it’s very easy to notice what coordinates a specific cube has.

The shapes.c file is where we declared the cube() function, which is called through
the specific coordinate parameters, from the drawCube() function. In this function a size
parameter can be changed, which changes the size of the cubes. Also if the protein is
specified to have a field on it, then the cube’s colour will be green, or if not it will be red.
To draw the cubes 24 3D vertexes are needed, in order to draw the sides of the cubes
by using those vertexes. The reason why we need 24 points, is because we actually
need to give 3 rectangles, when drawing 1 side of the cube. Each rectangle contains
one texture, so each side of the cube will have 3 coordinate textures on it.

Figure 3.1: From left to right
Showing an initialized box protein, a field loaded box protein, and a place holder one

The same box with coordinates 4,4,r is shown in the figure above. As discussed, each
side of the box consists of 3 coordinate textures. Red colour of the coordinates means
that the protein box is initialized, but doesn’t have a field on it, while green means that
it also has a field loaded. White coordinates mean that the box is uninitialized, and if
the x key is pressed the visibility of these boxes can be turned on and off. Furthermore
they are smaller than the other 2, which are the same size.
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3.3 Modified Equations

The original equations are shown in Section 2.2, but since we wrote our whole program
in C++, we could not directly implement these equations into our code including the
neighbouring molecules interactions. Instead we had to use the differential equations
with a chosen, small enough time interval (dt). Changes in the molecules’ dipole
moment could be obtained, by rearranging the differential equations. [16].

Calculating the actual viscoelastic part of the dipole moment, from the previous
state and its change during dt time

µex(t + dt) = µex(t) + dµex(t) = µex(t) +

(
Ex(t)
Ce1x

−
µex(t)

Ce1xCe2x

)
dt (10)

Getting the actual viscoplastic dipole moments, by rearranging the equations and
instead of using the sign and abs functions, separating the different cases.

If Ex(t) >
µp1x(t)
Cp2x

, then

µp1x(t + dt) = µp1x(t) + dµp1x(t) = µp1x(t) +

(
Ex(t)
Cp1x

−
µp1x(t)

Cp1xCp2x

)
dt. (11)

If Ex(t) ≤
µp1x(t)
Cp2x

, then

µp1x(t + dt) = µp1x(t). (12)

And the same way,

If Ex(t) >
µp2x(t)
Cp2x

, then

µp2x(t + dt) = µp2x(t) + dµp2x(t) = µp2x(t) +

(
Ex(t)
Cp1x

−
µp2x(t)

Cp1xCp2x

)
dt. (13)

If Ex(t) ≤
µp2x(t)
Cp2x

, then

µp2x(t + dt) = µp2x(t). (14)

Finally, the actual overall dipole moment can be obtained by

µx(t + dt) = µex(t + dt) + µp1x(t + dt) + µp2x(t + dt) + µ0x (15)

The Ce1x,Ce2x,Cp1x,Cp2x parameters are introduced and defined in Section 2.2. For
dt, we used 0.01, because in the equations dt = 0.01 [s], represents dt = 0.01 [ps] in
reality, and it was a small enough value, with which we could get correct results and
the program worked as planned.
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3.4 Explaining the Running of the Simulation

In this subsection, we discuss the Simulation part of the program in detail.

3.4.1 Applying the modified equations

In the previous subsection, we explain how the differential equations were changed in
order to use them in a C++ environment, which we wrote our simulation program in.

In general, we had to make the numerical solution of the differential equations,
which means calculating the difference of the dipole moment for small enough time
intervals, and adding them to the previous dipole value. Therefore we had to make two
global variables, for the calculation. One was called dt representing the time interval,
and the other was t, marking the actual time with which we can set the length of the
simulation.

The last obstacle was calculating the electric field on a protein. For a constant field, it
is easy, but the effect of the adjacent molecules’ dipole moment was a problem, because
it needed larger changes in the flow of the program. For fixed electric fields on the
molecules one dipole variable would be enough for one protein, but for a changing
field, its value being calculated in every step, every molecule needed at least two
variables for storing its dipole moment. The reason behind this is very simple, yet not
necessarily obvious. Let’s say there are two neighbour molecules, call them A and B.
At a given t0 time A’s dipole is X0, and B’s is Y0. The simulation goes to the next step:
t1 = t0 + dt, and we calculate A’s dipole with the help of Y0 and get X1. For calculating
Y1 we use A’s dipole, which had already changed to X1, but we should use the dipole
value from the previous time step (X0). Thus B’s dipole value would not be calculated
exactly as it should be, and the problem becomes larger with every additional molecule.
Hence we came up with the solution to separate the steps by their number. The steps
with even numbers were called A, and steps with odd ones B, and according to this we
created the variables dipA and dipB in the class, dedicated to the molecules, mentioned
in Section 3.1. This way we store the dipole values calculated in the A steps from the
neighbouring molecules’ dipB values in dipA and vice versa.

3.4.2 Simulation Algorithm

After we figured out the equations and resolved the problems regarding their imple-
mentation in the program – as mentioned above – writing the algorithm was not a hard
task. Taking everything in account, we came to the following algorithm,
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Algorithm 1 Simulation Algorithm
1: for t← 0 to desired time do
2: if no. of step is even then
3: for all initialized molecules do
4: dipA←

(
dipB + dµ

(
dt, neighbours’ dipB

))
5: end for
6: else
7: for all initialized molecules do
8: dipB←

(
dipA + dµ

(
dt, neighbours’ dipA

))
9: end for

10: end if
11: end for

where everything is as discussed above, and dµ is the function to calculate the
change in dipole moment, depending on the dt variable and adjacent molecules’ dipole
moment. Note that proteins are only used in the simulation if they have been initialized
with or without an electric field. In order to shorten the simulation time, we first
determine which proteins are initialized with a simple function.

3.4.3 User Inputs

In order to use the simulation algorithm on a protein structure we first need to define
it. The enter variable, printed on the program window, needs to be in the pressed state
to be able to initialize proteins without loaded fields, by pressing the enter key. If we
want to have a field loaded (green coloured) protein, the field mode is needed, achieved
by pressing the t key. Lastly if we want to delete an already initialized protein, the
delete mode is needed, by pressing the delete key. If the enter variable is in either of these
3 states then the specifying of the protein’s 3 coordinates is simply done by pressing
the appropriate number or letter keys. After typing 3 coordinates the program will
automatically perform the task respective to the enter variable.

The green coloured, field-loaded proteins are affected by the value printed on the
program window as the field variable. This value (given in kcal/(molÅe)) can be changed
using the field magnitude mode of the enter variable, by pressing the i key. After pressing
it we can define the desired value using the number keys. If the first key pressed is 0,
then it will be a negative value, if it’s any other number key it will be a positive value.
The second and third number keys pressed give the actual value of the field, so it can
be set between -99 and 99 kcal/(molÅe). After we’ve specified the desired field value,
the i key needs to be pressed again to set it, and this will also print it on the program
window.

After defining the protein structure, we can start a simulation step of 50 [ps], by
pressing the r key. Between each simulation step the configuration of the structure
can be changed, meaning that we can redefine which proteins are field-loaded, and
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the magnitude of the electric field. To start a new simulation from 0 time the program
needs to be restarted.

For example the simulation of the 3 molecule structure mentioned in Section 4.1, can
be done in the following way:

1. Initialize the 3 proteins by pressing the enter key, and typing the 9 coordinates
one after another. We should now see 3 red coloured boxes on the canvas, with the
appropriate coordinates.

2. Run the first simulation step by pressing the r key.
3. Press the t key, and type the coordinates of one of the proteins on the side, its

colour should change to green.
4. Press the i key, type 103, and press the i key again. Now the field variable should

be equal to 3.
5. Run the second simulation step by pressing the r key.
6. Press the enter key, and type the coordinates of the field-loaded green molecule,

its colour should change to red.
7. Run the third simulation step by pressing the r key.

Note that if the protein’s coordinates are above 9, then the letter keys need to be
used when specifying coordinates, and this can only be done if the switch variable is in
parameter mode, further described in Section 3.7.

3.4.4 Exporting the data

The simulation is running and calculating each protein’s dipole value in every step,
but without exporting the data, we can’t use the results, so we needed a method to
export them. For that reason we wrote in the code a StreamWriter which is responsible
for writing a file, with a given structure we had defined. The format is as follows:
the exported file is a CSV, as in Comma-separated values file, thus we can store the
values belonging to the same molecule in a column. Therefore the export file opened
in Microsoft Office Excel [20], would look like a table, with each column containing a
molecule’s dipoles moments one under another for each time step.

Two more things were needed in the tables, made from the .csv files, a header
showing which column belongs to which molecule, and putting the actual time values
in the first column, to see how much time is needed for a steady state, and for plotting
the dipole values respective to time.

To make such a file, the program had to cycle through the whole canvas, and write
in the first line the coordinates of initialized proteins. After this we just had to print out
the actual time in every step, and the values of the existing molecules’ dipole moment,
right after calculating them. The last thing was finishing every step with a line break,
at the end of the simulation closing the file, and the exported data was waiting to be
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analysed in an external file.

3.5 Explaining the Searching Algorithm

In this subsection we will go over the reasons the Searching Algorithm was created,
and explain in detail how it works.

3.5.1 Reasons and goals

As we described in earlier sections of this documentation, there are some difficulties
when trying to put together a molecular structure for a specific logic function. Obvi-
ously as it will be shown in Section 4, easier logic gates can be realized even without
the help of the algorithm presented here, but for example a XOR gate already needed a
lot of speculation and guessing to be put together. The reasons for this are that Dronpa
proteins have a memory like quality, and react differently to different magnitudes of
electric fields. These qualities make them very distinctive from transistors, thus they
can’t be approached with the same mind-set. Realizing simple logic gates, and build-
ing other logic functions using these gate structures is not an efficient method when
using proteins. There are nearly infinite number of structures that realize the same
logic function, and building logic functions using basic gates is nearly impossible to
do, because of Dronpa’s qualities. Furthermore if such logic functions happen to be
found they will be a lot bigger and more complex than needed, meaning that finding
the smallest structure that realizes a specific logic function can be very hard, and isn’t
intuitive.

Because of these reasons we realized that building logic functions out of proteins
can’t be done in a structured logical way, but rather using random methods to find the
specific molecular structure for the required logic function. Out of all the structures
that can achieve a specific logic function, the smallest one should be found and used.
We will present our findings of how much simpler structures can be found using this
algorithm in Section 4.

3.5.2 User Inputs

In the current version 4 inputs and 7 outputs can be set, but the algorithm is written
in such a way that scaling can be done very easily. Virtually any number of outputs
could be set, but for our tests we found 7 to be more than enough. The 4 inputs can’t
be modified, since they are the same for every logic function: 0000, 0001, . . . , 1111. So
if all 4 inputs are used then a maximum of 16 bits can be achieved for every output.

Outputs of the logic function can be set by the user, when the enter variable is
in output mode (further discussed in Section 3.7). In this mode the first number key
pressed will be the number of the output channel. When specifying multiple output
channels it needs to be done in an ascending order, from 1 to 7. After specifying the
number of the output channel the output bits can be set, which can be either 0, 1 or 2,
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the latter meaning that we do not care whether that bit is 0 or 1. Lastly after specifying
the desired output bits, the number of which can be either 2, 4, 8 or 16 the k key needs
to be pressed again to save those bits to the current output channel. When an output
channel is specified the program will print the output bits, and the required number of
outputs and inputs on the left side of the program window.

Figure 3.2: Example for logical inputs

Figure 3.3: The output text of the 7 segment display logic function

3.5.3 Algorithm background and basic rules

Before we started writing the algorithm we set some basic rules to the type of structures
it will look for, in order to make the structures as simple and close to transistor logic as
possible.

For each input and output channel a different molecule will be used. Only input
molecules can be directly affected by electric fields. Its value is between -10 and +10
kcal/(molÅe), and it can only be an integer.

The simulation part of the algorithm is run similar to earlier descriptions. The first
step is running without any electric field. In the next step an electric field will be put
on an input, and in the third step, the simulation will be run again without any electric
field. Steps 2 and 3 will be repeated until an electric field was applied to all input
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molecules. After the simulation part all the input and output proteins will be tested,
whether they achieved the required logic bit. For each molecule an increase in its dipole
at the end of the simulation compared to its dipole after the first step corresponds to
logic 1, and a decrease to logic 0. These are the basic rules by which the algorithm tries
to find a structure achieving the desired logic function.

3.5.4 Structure Search

The algorithm will first start with a minimum number of molecules needed for the logic
function, meaning the number of inputs + number of outputs, and then if it doesn’t find
the satisfying structure it will move on to a higher number of proteins.

At each number of molecules there is a minimum number of different structures
that need to be checked, all other structures being the same in function to these. The
low amount of different structures is due to the fact that in the simulation we only take
into account the 6 closest neighbours, and don’t care about proteins placed diagonally.

3 1

4 3

5 4

Number of
molecules

Minimum
number of
structures

Structures

Figure 3.4: Minimally required structures

Theoretically for the algorithm to be perfect regarding both speed and precision it
should check exactly, only these structures and no others. Unfortunately we couldn’t
find a method by which to find only exactly these structures. Since the run time of
the algorithm is already tremendously huge because of other aspects we decided to
leave out some structures, sacrificing a little on precision. This way the algorithm
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won’t always find the absolute minimum number of molecules needed to achieve a
logic function. On the other hand it runs faster, and this way we found several logic
functions during the time we had to run it.

The algorithm that finds separate structures will be now discussed.

The main logic behind it is that it takes 3 manually given molecules, and tries to
add a 4th one in such a way that it satisfies the minimally required structures. The logic
behind not finding the same (in function) structure twice is assigning the number of
neighbours to each molecule in the structure. Then an algorithm takes 2 structures
with the same molecule number, and makes an ordered list of the assigned numbers to
each molecule. If the lists are identical then the 2 structures are same in function, thus
only 1 is required to be checked further. After some tests we found that this algorithm
while almost finding all the required structures, it leaves a little portion of them out,
thus sacrificing on precision, but reducing run time.

Algorithm 2 Sorting Algorithm
Returns the number of neighbours for all the proteins of a specific structure
number of initialized proteins: n
array of initialized protein’s first index: i[n], second index: j[n], third index: k[n]
array to contain the protein’s number of neighbours: proteins[n]

1: for l← 0 to n − 1 do
2: for m← 0 to n − 1 do
3: if abs(i[m] − i[l]) + abs( j[m] − j[l]) + abs(k[m] − k[l]) = 1 then
4: proteins[m]← proteins[m] + 1
5: end if
6: end for
7: end for
8: swapped← true
9: while swapped do

10: swapped← f alse
11: for j← 0 to n − 2 do
12: if proteins[ j] < proteins[ j + 1] then
13: swap proteins[ j] and proteins[ j + 1]
14: swapped← true
15: end if
16: end for
17: end while
If this algorithm returns the same proteins[] array for 2 separate structures, then the
two structures are same in function.

The other part where precision is sacrificed is after finding all the 4 molecule struc-
tures, the algorithm will take the last one found, and it will move on to add a 5th
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molecule using that 4 molecule structure, the same way that we described adding a 4th

molecule to the 3 molecule structure took place. This iteration will continue adding
more and more molecules until the desired structure is found. Since we only use 1
structure to generate the next, higher protein count structure, this is the main reason
why the algorithm doesn’t test all the minimally required structures.

1
2
2
2
1

=

1
2
2
2 1

Figure 3.5: Showing equal (in function) protein structures

3.5.5 Detailed Search

We will now discuss how the detailed search takes place after finding a possible struc-
ture candidate.

When a candidate structure is found the terteszt function is started to continue the
detailed search. First of all the algorithm will search all the different input molecule
positions within the structure. For a 4 molecule structure with 2 input molecules
given that means 3 + 2 + 1 = 6 possible candidates. For each of these possible input
molecule arrangements the algorithm will apply different electric fields to the two input
molecules, meaning 21 ∗21 = 441 possible candidates, if the bounds for the electric field
are -10 and 10 kcal/(molÅe).

Furthermore all of these configurations will be checked for all the bits given, at 2
input molecules this number is 22 = 4. This is needed because 1 configuration can only
be tested for 1 possible outcome at once, so all the rows of the logic function’s logic
table have to be tested separately. Two more checks are needed for the algorithm to
be completely thorough. The first one we found while testing is that for applying the
respective electric fields to the respective input molecules in switched order might lead
to a different outcome, so a for loop for this aspect was also implemented. The other
one that is needed is checking all the molecules that are not used as input molecules in
the current configuration, as the possible output molecule (multiplied by the number
of outputs channels).

Thus a specific structure and electric field – input molecule configuration will only
be selected if all the rows of the logic function’s logic table are satisfied by the selected
output and input molecules dipole moment change as described above.
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3.5.6 Finding the result

While the algorithm runs the graphical window isn’t active, so one way of finding
out whether the algorithm is done is by checking whether the window is active again.
When the intended structure is found the algorithm will print the result in a txt file
named talalatok.txt.

17 18 18
18 17 18
18 18 17
18 18 18
field 1: -10
field 1 applied to protein: 18 17 18
field 2: -10
field 2 applied to protein: 17 18 18
output protein: 18 18 17
field 1: 1
field 1 applied to protein: 18 17 18
field 2: -10
field 2 applied to protein: 17 18 18
output protein: 18 18 17
field 1: -10
field 1 applied to protein: 18 17 18
field 2: 1
field 2 applied to protein: 17 18 18
output protein: 18 18 17
field 1: 0
field 1 applied to protein: 18 17 18
field 2: 1
field 2 applied to protein: 17 18 18
output protein: 18 18 17

Figure 3.6: AND gate output

In Figure 3.5.6 we can see the output of the algorithm in talaaltok.txt, searching for
an AND gate. The first rows show the coordinates of the proteins used in the structure
(in this case 4 rows were needed). After that we can divide the rest of the text into
blocks, each block representing one row of the logic functions logic table, the first block
being, when the inputs are 00, the second when the inputs are 01 and so on. One block
consists of the rows between the 2 nearest rows starting with field 1. In this example
each block consists of 5 rows, and there are 4 blocks in total, but if more input or output
channels are specified the txt file’s structure will adapt dynamically.

Each block starts with the electric fields, and the proteins’ coordinates on which
those fields are applied. The electric fields are applied in the order stated in the specific
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block, but once in a while this order might be switched in order to achieve the desired
result on the output molecule. This property is not printed in the txt file, so we can
only find out the true order of the fields applied when we manually test the structure
and configurations. After the input proteins are listed, the output proteins are next.
If more output channels are listed, than there will be no distinction, so again to find
out which output protein corresponds to which output channel we have to check the
structure and simulate it manually. We discuss such easily implementable features and
others in Section 5.4.

3.6 Other Functions

In this subsection we will discuss further functions that we consider important to
mention. These functions are connected to the simulation part of the program.

3.6.1 Save function

This function makes it easier to reuse protein structures. We implemented it because we
realized that we have to make many simulations on the same structure, so if we could
save it, and have it even after closing the program, it would help a lot. When in parameter
mode (explained in Section 3.7), we can start this function by pressing the s key. It will
save all the initialized protein’s coordinates to a file called strukt.csv, as well as whether
the initialized protein’s had electric fields loaded on them or not. Furthermore it will
save the current rotation, movement and zoom parameters to params.dat. This way if
a specific structure is saved while it can be clearly visualized, we don’t even have to
rotate or move it when loading it again to see it well.

3.6.2 Load function

This function is the pair of the save function. When in parameter mode the function
starts by pressing the o key. It will load the previously mentioned files, and initialize the
proteins given, with electric fields if specified. Furthermore it will load the structure
in exactly the same orientation and dimension that we saved it. In short if we press
the s key, then close the program, reopen it and press the o key, the window will look
exactly like when we closed it. An important note is that when initializing the proteins
from the strukt.csv file the function won’t delete any other proteins which were already
initialized since starting the program.

These functions are a convenient method to store structures, and when a specific
one is needed, we can just paste the strukt.csv and params.dat files of the saved structure
into the program library.
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3.7 User Manual

In this subsection we will go over the various keyboard and mouse inputs with which
the program can be operated and navigated, as well as explain the various variables
printed as text directly on the program window. Some functions or parameters men-
tioned here might be further discussed in another part of the documentation.

3.7.1 First start of the program and navigating the graphical interface

When first starting the program it loads all the empty, placeholder boxes for the mo-
lecules. Since loading so many 3D boxes with textures is very resource intensive, the
first step after starting the program should be hitting the x key to hide them.

Figure 3.7: Starting program window

The structure can be rotated around and moved along 2 axes, both features being
available by right clicking anywhere in the program window with the mouse. After
the first start, before right clicking to use these functions it is required to left click
anywhere in the window, since the algorithm needs a starting point for the mouse’s
coordinates. Obviously the rotation and linear displacement can’t be done simultan-
eously, so switching between the two modes is required. To switch to rotation the w key
needs to be pressed, and to switch to movement the q key needs to be pressed. Switch-
ing also requires a left click first to exit whichever mode the program is in. Doing this
stops the rotation or movement function. Checking whether the program is in rotation
or movement mode is made simpler by the movement variable being displayed on the
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lower left corner. movement=rotation means that the program is in rotation mode, while
movement=movement means that the movement function is on.

The structure
won't move
if the mouse

is moved

After a
left click

After a
right click

Pressing
button e

movement
= light

Pressing
button w

movement
= rotation

Pressing
button q

movement
= movement

Moving the
mouse rotates
the structure

Moving the
mouse moves
the structure

Moving the
mouse moves

the light

Figure 3.8: Graphical interface navigation flow chart

The state of the mouse (which mouse button was last clicked) is shown in the
program window with the help of the mousebtn variable, its value either equal to Left
or Right. Furthermore the 2 rotation angles are also displayed in the Angle variable,
separated by a comma.

Besides rotating and moving a third minor option is also available using the mouse’s
movement. Pressing the e key will switch the mouse to rotate the small white light. The
movement variable’s value is set to light in this mode. Using the mouse wheel zooms
in and out of the structure. The current zoom-level is displayed on the screen using
the Dim variable. Going below 1.0 zoom is not advised because it will result in the
disappearance of the structure.

3.7.2 Other keyboard inputs and parameters

Upon pressing the Esc key, the program will close. As mentioned before the x key
toggles on and off the black placeholder boxes. The l key toggles on and off the light,
acting as a light switch, this feature also being shown on screen, as the Light variable,
which is either equal to On or Off. The light can also be elevated with the use of the ]
key, and lowered with the [ key. With the d key the diffuse parameter of light can be
increased if lowercase, or decreased if uppercase. The current state of the parameter is
shown on the screen as the Diffuse variable, and its value ranges from 0 to 100. The v
key toggles on and off the text printed directly on the program window. The field of
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view can be decremented with the “-” key and incremented with the “+” key, its value
being displayed on the screen as the FOV parameter.

Furthermore there are some keys that will start specific functions. These functions
are presented with more detail in the 3.6 Other functions section of the documentation.
The r key will start the futas function which is responsible for starting the simulation.
Starting the searching algorithm is done by pressing the f key, which calls the fofuggveny
function. The s key is responsible for starting the save function, and the o key initiates
the load function.

The enter variable further discussed in other parts of the documentation has 5 modes,
each reachable by pressing different keys. In each mode the number keys are used for
setting different inputs. The field, pressed and delete modes are used to specify molecule
coordinates, while the use of the field magnitude mode is further described in Section
3.4, and the output mode is discussed in greater detail in Section 3.5.

key mode
t field
i field magnitude
k output
enter pressed
delete delete

Table 1: Modes of the enter variable

The current mode in which the variable resides is displayed in the program window
as enter=*current mode*. The magnitude of the field given by the user is also printed on
the screen, as the field variable, its value is set to 0 as default.

Figure 3.9: Printed parameters

3.7.3 Switching between parameter and coordinate input

In order to be able to use the letters a-z for coordinate input as well as parameter
input, the space key can be used. Its value is either parameters or coordinates, the former
being the default when starting the program, represented by the switch variable printed
on the program window. The coordinates typed are printed on the screen using the
Coordinates variable, the default being 36, since we only use numbers from 0 to 35.
Only the first 3 numbers given are printed, so if the enter variable’s value is set to output
mode, then further number inputs will not be shown.
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The entering of coordinates is done with the help of number keys as well as letters,
ranging from 0 to 35 in alphanumerical order. All the number keys can be used in
parameter mode as well as coordinates mode, making easier the entering of molecule
coordinates which only require numbers 0 to 9, and using the keyboard functions in
parameter mode at the same time.
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4 Simulations, results

In this section we will go over the various simulations which we ran, and explain
the results in detail. We will show how dipole-dipole coupled logic can correlate to
transistor logic, and how logic gates and functions can be achieved with the help of
molecular structures.

4.1 Initial Molecule Structure

This subsection will focus on discussing the several molecular structures tested and
found by us, before creating the Searching Algorithm. We think that it’s important to
mention these for the sake of comparison later on.

4.1.1 3 molecule structure

The structure simulated and discussed here is basically the same one as used in this
paper [12]. We decided to first test the simulation part of the program with this simple
structure, so we can compare our results with those in the paper [12]. We can easily
check the validity of our results this way, and whether the equations work as intended
in the program.

Figure 4.1: 3 molecule structure comparison

The simulation run is on 3 molecules placed along one axis linearly, at 7 nm from
each other. The base dipole value is -100 Debyes as always, and we chose 50 ps as
time step instead of 40, the reason for this being, that the longer the simulation runs,
the closer the molecules will get to their final dipole value. In the first step no external
electric field is applied, so the molecules only affect themselves. In the second step an
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electric field of 3 kcal/(molÅe) is applied to protein A, then in the final step the electric
field is stopped, meaning that no external field is applied.

As seen in Figure 4.1 protein A reaches a state of logic 1, protein B is equal to logic 0,
while protein C reaches logic 1 as well, thus showing that the inverter gate is realized
simply by putting 2 molecules next to each other, and loading an electric field on one
of them, as further described in this paper [12]. The simulation result from the paper
is very similar to our result, the slight differences are there because of the different
computing algorithm, and the differential equations used [16]. We conclude that the
simulation part of the program works as intended.

4.1.2 4 molecule structure

This 4 molecule structure discussed below is another example of comparison between
the results from the paper mentioned before, and our simulation program, also showing
how the majority gate could be realized [12].

Figure 4.2: 4 molecule structure comparison
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A

B

CD

Figure 4.3: The examined 4 molecule structure

The 4 molecules are placed next to each other as shown in Figure 4.3, protein D
being in the center and the other 3 around it. A, B and C are the input proteins, to
which we load the same electric field corresponding of -1 kcal/(molÅe) to set the output
protein D to logic 1. After that an electric field equivalent of 3 kcal/(molÅe) is applied
to each input molecule consecutively. Thus the output protein reaches logic 0 after
2 electric fields have been applied, realizing the majority gate. As seen in Figure 4.2
the simulation results are very similar, achieving the same kind of functionality: the
majority gate, as further described in [12].

Using as example the above structure and results we can further show how the
NOR and NAND gate can be realized. If we leave out the step where we apply an
electric field to protein C we will have a NAND gate, protein A and B being the inputs,
and protein D the output. When both input proteins are set to logic 0 in the first step,
the output reaches logic 1. After that it will only switch to logic 0 if both input proteins
are set to logic 1, thus achieving the NAND logic table.

The NOR logic gate can be accomplished by taking the above model and regarding
protein B and C as inputs, and protein D as output. For this configuration we need to
apply an electric field to protein A before, for the gate to be functional. Same as in the
previous example if both input proteins are set to logic 0, the output is logic 1. After
that setting either protein to logic 1 (or both of them), will put the output protein to
logic 0, thus accomplishing the NOR logic table.

Using these structures the AND and OR gate is also easily achievable. Since the
AND gate is the inverse of the NAND gate, and inverting is done by simply transmitting
the signal from one protein to another, if we put a protein next to the output of the
NAND gate, and we consider that protein as ouput protein, we will have and AND
gate. The OR gate is similarly derived from the NOR gate.

Obviously these configurations only work if at the start of the simulation all the
proteins start with their base dipole value of -100 Debyes, and the respective electric
fields are applied using the aforementioned values. Since Dronpa proteins are lin-
early sensitive to electric fields, using a greatly higher or lower value might make the
molecular structure not function as the logic gate it is intended to achieve.

4.1.3 The XOR gate

In this sub-section we will go over how a slightly more complex gate, the XOR gate can
be accomplished trying to use the same, building it from simpler gates logic, as used
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in transistor gate structures.

Figure 4.4: XOR gate structure

When building the XOR gate from simpler gates, we use 2 AND gates and 1 OR
gate, assuming that we have both the base and negated form of the 2 inputs. As shown
in the previous subsection we use 5 molecule structures for both the AND and OR
gates. The first AND gate consists of molecules (444, 554, 544, 534, 644), the second one
(446, 556, 546, 536, 646), and the OR gate (635, 646, 644, 645, 745). As you can see some
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proteins are used both as outputs of AND gates and inputs of the OR gate. In order for
the OR gate to work we need its third input (which isn’t the output of an AND gate),
to be set to logic 1. This though is not that simple since, it can’t have any logic 1 dipole
moment value, it has to be exactly in the order of magnitude of the other inputs. Using
this logic we arrive to the conclusion that in order to be the same dipole value as other
inputs, the third input needs to be the output of a third AND gate. Thus the structure
has 9 inputs in total (inputs of the 3 AND gates), shown with green in Figure 4.4, and
1 output, the protein 745.

The structure works similarly to AND and OR structures, the first step being ap-
plying a field of -5 kcal/(molÅe) to all inputs, setting them to 0, also setting the output
protein to 0. After that we found that the structure works only if the input proteins are
set to logic 1 when needed with a specific electric field value of 23 kcal/(molÅe). We
divide the simulation into 2 parts after setting all the inputs to logic 0, the first being
when the output is 0, and the second being when the output is 1. In both cases for the
OR gate to work, we set 2 inputs of the third AND gate to logic 1. In addition to this,
for the output to be 0 we set 1 input of the first and second AND gate to logic 1. For the
output to be logic 1, we set 2 inputs of the first AND gate to logic 1, leaving the inputs
of the second AND gate in the initial logic 0 state. Since it makes the problem much
more complex using only the base signal of the inputs we assume that the negated
signal is available. The A input of the XOR gate is applied to protein 536, its negated
signal to protein 444. The B input is applied to protein 534, its negated to protein 446.
The output protein is 745.

A input B input Output
logic 0 logic 0 logic 0
2nd AND gate protein 536=logic 0 1st AND gate protein 534=logic 0
1st AND gate protein 444=logic 1 2nd AND gate protein 446=logic 1
logic 0 logic 1 logic 1
2nd AND gate protein 536=logic 0 1st AND gate protein 534=logic 1
1st AND gate protein 444=logic 1 2nd AND gate protein 446=logic 0
logic 1 logic 0 logic 1
2nd AND gate protein 536=logic 1 1st AND gate protein 534=logic 0
1st AND gate protein 444=logic 0 2nd AND gate protein 446=logic 1
logic 1 logic 1 logic 0
2nd AND gate protein 536=logic 1 1st AND gate protein 534=logic 1
1st AND gate protein 444=logic 0 2nd AND gate protein 446=logic 0

Table 2: XOR gate extended logic table

As shown at other gates we can get the XNOR gate simply by adding a molecule
next to the output of the XOR gate, and considering that protein as the output of the
same structure configuration.
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4.1.4 Resetting a protein’s dipole moment

An important topic to discuss is the memory aspect of Dronpa proteins, and how
electric fields can be used to reset their dipole moment value.

Figure 4.5: Resetting

As shown in the figure above, Dronpa has some special properties, that make it very
different from transistors. Because of its nature, we found by studying the equations
and testing that after applying an electric field, if we try to apply another electric
field with an absolute value equal or less (if the electric field’s direction is opposite, it
has to be strictly less) than the previous field’s value, the protein will go back to the
same dipole value, meaning that the protein has a dipole saturation property. This is
demonstrated on the graph above, when we first apply a field of 3 kcal/(molÅe), setting
the molecule to logic 1. After that we applied the same electric field, and the protein’s
dipole value didn’t change. Continuing we applied an electric field of 4 kcal/(molÅe),
which being greater than 3 finally changes the dipole moment value. After that, to
prove that applying an electric field with opposite direction, but less than the previous,
we applied an electric field of -1 kcal/(molÅe), still not changing the dipole moment.

An important thing to note here is, that it isn’t exactly the previous field which
we have to compare to when speaking about saturation, but rather the field with the
greatest absolute value among the previous fields applied after reaching a specific
saturation state. To demonstrate this after applying the -1 kcal/(molÅe) electric field,
which didn’t change the saturation state, we applied a 4 kcal/(molÅe) electric field,
which because it’s equal to the electric field, which put the molecule in the current
saturation state doesn’t change the dipole moment.

Finally we show that by applying an electric field in the opposite direction but
equal to the previous biggest field, we can reset the protein’s dipole moment value to
its starting value of -100. In this case that meant applying a -4 kcal/(molÅe) electric
field, reaching the starting dipole state by the 800 [ps] time step. We demonstrate this
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property again after that, with switched direction electric fields, but of equal value,
again resetting the protein’s dipole moment.

Obviously this resetting will only work perfectly if no other molecules are nearby
affecting the protein which we want to reset. In the above simulations we actually
placed several proteins next to the one which we tested, showing that even if there
are some molecules nearby, it won’t change anything visually. Although if we check
the exact values we can see that the dipole moment doesn’t go back to exactly the
same value, in this case being between -1 to 1 Debye difference. Again this difference
depends a lot on what dipole moment the nearby molecules have, thus making this
resetting method very hard to be exact, in such cases.

4.2 Logic Gates as found by the Searching Algorithm

This subsection will be dedicated to discuss the 6 basic logic gates, and the protein
structures that the Searching Algorithm found for them. The inverter gate can be easily
achieved by putting 2 molecules next to each other, because of the properties of Dronpa,
as earlier described in the documentation, so we won’t include it here.

We will present the results as well as the manual simulations of the results in a
comprehensive table. In the results of the manual simulation, we subtract the dipole
value after the very first step when no electric fields are applied from the end state dipole
moment, thus if this number is positive than the protein is set to logic 1, otherwise it’s
logic 0. We give this number as the dipole variable in the tables. For each simulation we
gave a specific electric field boundary value, for which the searching algorithm tests
the structure, so it usually first finds the configuration with the minimum electric field,
because of the nature of the algorithm, but obviously closer to 0 electric fields could also
achieve similar results. Furthermore the reason behind the coordinates of the proteins
being found around 18 is because the algorithm starts looking for protein structures at
the centre of the 36x36x36 box.

4.2.1 AND Gate

The Searching Algorithm found a structure consisting of 4 proteins, (16,18,18), (17,17,18),
(17,18,18), (18,18,18) respectively. Of these the first two are the input proteins, and the
last one is the output protein.
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B input (16,18,18) A input (17,17,18) Output (18,18,18)
3rd step: -3 field applied 2nd step: -3 field applied
dipole= -462,463 dipole= -461,479 dipole= -3,530
logic 0 logic 0 logic 0
3rd step: -3 field applied 2nd step: 1 field applied
dipole= -459,056 dipole= 152,083 dipole= -0,895
logic 0 logic 1 logic 0
3rd step: 1 field applied 2nd step: -3 field applied
dipole= 150,274 dipole= -460,116 dipole= -1,5734
logic 1 logic 0 logic 0
3rd step: 1 field applied 2nd step: No field applied
dipole= 153,682 dipole= 0,704 dipole= 0,704
logic 1 logic 1 logic 1

Table 3: AND Gate table
All electric field values are given in kcal/(molÅe)

All dipole moment values are given in Debyes

4.2.2 OR Gate

The Searching Algorithm found a structure consisting of 4 proteins, (16,18,18), (17,17,18),
(17,18,18), (18,18,18) respectively. Of these the first two are the input proteins, and the
last one is the output protein.

An interesting thing to note here is that both the AND and OR gates found are very
similar to the structures found manually, discussed in Section 4.1.

B input (16,18,18) A input (17,17,18) Output (18,18,18)
3rd step: -5 field applied 2nd step: -5 field applied
dipole= -772,476 dipole= -770,833 dipole= -7,587
logic 0 logic 0 logic 0
3rd step: -3 field applied 2nd step: 2 field applied
dipole= -456,895 dipole= 306,557 dipole= 0,601
logic 0 logic 1 logic 1
3rd step: 5 field applied 2nd step: -3 field applied
dipole= 766,537 dipole= -456,894 dipole= 1,648
logic 1 logic 0 logic 1
3rd step: 1 field applied 2nd step: No field applied
dipole= 153,682 dipole= 0,704 dipole= 0,704
logic 1 logic 1 logic 1

Table 4: OR Gate table
All electric field values are given in kcal/(molÅe)

All dipole moment values are given in Debyes
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4.2.3 NAND Gate

The structure found for the NAND Gate consists of 3 proteins, (16,18,18), (17,18,18),
(18,18,18) respectively. The middle one is the output protein, and the other two are the
input proteins.

B input (16,18,18) A input (18,18,18) Output (17,18,18)
3rd step: -5 field applied 2nd step: -5 field applied
dipole= -772,233 dipole= -770,597 dipole= 132,996
logic 0 logic 0 logic 1
3rd step: -5 field applied 2nd step: 1 field applied
dipole= -767,115 dipole= 150,751 dipole= 65,442
logic 0 logic 1 logic 1
3rd step: 1 field applied 2nd step: -5 field applied
dipole= 147,259 dipole= -768,470 dipole= 75,080
logic 1 logic 0 logic 1
3rd step: 1 field applied 2nd step: No field applied
dipole= 153,882 dipole= 0,904 dipole= -10,272
logic 1 logic 1 logic 0

Table 5: NAND Gate table
All electric field values are given in kcal/(molÅe)

All dipole moment values are given in Debyes

4.2.4 NOR Gate

The structure found for the NOR Gate is exactly the same as the NAND Gate. Again
the NOR and NAND gate structures are very similar to the ones found by manual
simulation, presented in 4.1 Initial molecule structures.
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B input (16,18,18) A input (18,18,18) Output (17,18,18)
3rd step: -5 field applied 2nd step: -5 field applied
dipole= -772,233 dipole= -770,597 dipole= 132,996
logic 0 logic 0 logic 1
3rd step: -2 field applied 2nd step: 2 field applied
dipole= -302,123 dipole= 307,347 dipole= -4,170
logic 0 logic 1 logic 0
3rd step: 5 field applied 2nd step: -3 field applied
dipole= 766,736 dipole= -456,487 dipole= -12,046
logic 1 logic 0 logic 0
3rd step: 1 field applied 2nd step: No field applied
dipole= 153,882 dipole= 0,904 dipole= -10,272
logic 1 logic 1 logic 0

Table 6: NOR Gate table
All electric field values are given in kcal/(molÅe)

All dipole moment values are given in Debyes

4.2.5 XOR Gate

The structure found for the XOR Gate is a little bit more complex than the previous
ones, but still far simpler than the one which we found manually, described in Section
4.1. It consists of only 6 molecules (15 18 18), (16 17 18), (16 18 18), (17 17 18), (17 18 18),
(18 18 18), respectively.

B input (16,17,18) A input (17,17,18) Output (16,18,18)
3rd step: -1 field applied 2nd step: -7 field applied
dipole= -0,922 dipole= -1077,57 dipole= -3,834
logic 0 logic 0 logic 0
3rd step: -10 field applied 2nd step: -1 field applied
dipole= -1529,91 dipole= 11,142 dipole= 160,988
logic 0 logic 1 logic 1
2nd step: -1 field applied 3rd step: -10 field applied
dipole= 11,142 dipole= -1529,91 dipole= 2,839
logic 1 logic 0 logic 1
3rd step: 1 field applied 2nd step: 1 field applied
dipole= 138,712 dipole= 144,740 dipole= -5,333
logic 1 logic 1 logic 0

Table 7: XOR Gate table
All electric field values are given in kcal/(molÅe)

All dipole moment values are given in Debyes
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4.2.6 XNOR Gate

The structure found for the XNOR Gate consists of 4 molecules (15 18 18), (16 18 18),
(17 18 18), (18 18 18), respectively. Again this structure is also much smaller than the
one built manually.

B input (16,18,18) A input (17,18,18) Output (15,18,18)
3rd step: -10 field applied 2nd step: -10 field applied
dipole= -1337,59 dipole= -1401,69 dipole= 142,792
logic 0 logic 0 logic 1
2nd step: 1 field applied 3rd step: 10 field applied
dipole= -0,806 dipole= 1539,833 dipole= -5,618
logic 0 logic 1 logic 0
3rd step: -1 field applied 2nd step: -10 field applied
dipole= 62,666 dipole= -1546,57 dipole= -3,019
logic 1 logic 0 logic 0
3rd step: 1 field applied 2nd step: 7 field applied
dipole= 11,597 dipole= 1084,195 dipole= 1,142
logic 1 logic 1 logic 1

Table 8: XNOR Gate table
All electric field values are given in kcal/(molÅe)

All dipole moment values are given in Debyes

4.3 Logic Functions

In this sub-section we will cover two more complex logic functions found by the Search-
ing Algorithm. The functions are the half-adder and the half-subtractor. Other, more
complex logic functions were also tried, but since the algorithm scales exponentially
with more inputs specified, we didn’t have enough time or resources for it to finish.

4.3.1 The Half-adder

A structure of 8 proteins was found suitable by the Searching Algorithm, given below.
With green are marked the inputs, and red represents the 2 outputs.

15 17 18 16 17 18 17 17 18
14 18 18 15 18 18 16 18 18 17 18 18 18 18 18

Figure 4.6: Half-adder structure
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B input (15,17,18) A input (16,17,18) Output S (15,18,18) Output C (17,18,18)
3rd step: -1 field appl. 2nd step: -7 field appl.
dipole= -0,272 dipole= -1086,2 dipole= -3,93 dipole= -10,21
logic 0 logic 0 logic 0 logic 0
3rd step: -10 field appl. 2nd step: -1 field appl.
dipole= -1530,3 dipole= 12,748 dipole= 161,06 dipole= -0,444
logic 0 logic 1 logic 1 logic 0
2nd step: -1 field appl. 3rd step: -10 field appl.
dipole= 11,728 dipole= -1540,3 dipole= 2,758 dipole= -17,9
logic 1 logic 0 logic 1 logic 0
3rd step: 1 field appl. 2nd step: 1 field appl.
dipole= 138,174 dipole= 148,991 dipole= -5,15 dipole= 1,754
logic 1 logic 1 logic 0 logic 1

Table 9: Half-adder table
All electric field values are given in kcal/(molÅe)

All dipole moment values are given in Debyes

4.3.2 The Half-subtractor

The structure of the half-subtractor is exactly the same as the half-adder, the only
difference being that the input and output proteins are chosen differently.

15 17 18 16 17 18 17 17 18
14 18 18 15 18 18 16 18 18 17 18 18 18 18 18

Figure 4.7: Half-subtractor structure
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B input (15,17,18) A input (15,18,18) Output D (16,17,18) Output B (17,18,18)
3rd step: -1 field appl. 2nd step: -7 field appl.
dipole= -0,282 dipole= -1085,9 dipole= -4,09 dipole= -4,245
logic 0 logic 0 logic 0 logic 0
3rd step: -10 field appl. 2nd step: -1 field appl.
dipole= -1530,3 dipole= 12,942 dipole= 160,89 dipole= 0,62
logic 0 logic 1 logic 1 logic 1
2nd step: -1 field appl. 3rd step: -10 field appl.
dipole= 11,715 dipole= -1539,9 dipole= 2,613 dipole= -5,886
logic 1 logic 0 logic 1 logic 0
2nd step: 3 field appl. 3rd step: 1 field appl.
dipole= 458,219 dipole= 99,396 dipole= -40,69 dipole= -0,137
logic 1 logic 1 logic 0 logic 0

Table 10: Half-subtractor table
All electric field values are given in kcal/(molÅe)

All dipole moment values are given in Debyes
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5 Discussion

During our testing and analysing we encountered a handful of problems and issues,
of which several were resolved. In this chapter we will go over what problems the
simulation and the searching algorithm might have, as well as go over some logical
and theoretical challenges. Solutions to these problems and further improvements to
the program are also discussed. Furthermore we talk about future plans as well.

5.1 Concept related issues

In this subsection we describe some problems that we’ve encountered when we tried
manually building protein structures, and other related comments. While theoretical
simulations might overcome them, they definitely pose a challenge in practice.

5.1.1 Signal transfer

One of the reasons why it’s hard to create structures of proteins using similar logic to
transistor circuits is that the signal transferred from one protein to another falls greatly
after each jump. The signal is decreased by roughly 99% each time it jumps from one
protein to another. This poses 2 problems, the first being that after several jumps the
signal would be hard to detect, and other protein’s noise could alter the function of the
structure. Thus some kind of amplifier or repeater has to be used in order to maintain
a big enough signal value when implementing such structures in practice. The other
issue is that we can’t predict exactly how much the signal falls when creating molecular
logic functions. This is one of the reasons why we can’t just take the output of one
structure, and use it as the input for the next one.

5.1.2 Reset problem

As mentioned earlier in Section 4.1.4, the resetting of a protein’s dipole moment can be
done exactly only if there are no neighbours affecting it. The reset method still works
if neighbours are present, but it does not set the dipole moment of the protein to its
initial value. This is a problem because if we want to reuse a molecular structure for a
specific logic function, the proteins have to possess their initial properties. Of course
for simulation purposes by simply restarting our program this can be achieved, but in
practice a resetting method has to be used if we want to re-use these structures.

5.1.3 Logic

We used a specific logic when approaching protein structures. We tried to make it
work as close to transistor logic as possible, but since Dronpa is a special protein, many
types of logical methods can be used, and other approaches might prove more useful
than ours. Furthermore other proteins with better polarizability properties could also
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be used. The main issue with our approach is that for each logic function a specific
molecular structure has to be found, and we can’t build complex functions from smaller
structures, because of the nature of the protein. As the complexity increases so does
the running time of the Searching Algorithm, so it is only able to find smaller structures
within a reasonable period of time. If we want to implement protein logic into practice,
we have to be able to build complex structures following a specific method or logic to
achieve computing architectures.

5.2 Comments on the program

In this subsection we discuss some topics related to the program, that might need
improving.

5.2.1 Neighbours

The proteins form a 3D grid and apart from those situated by the boundaries, every
molecule has 6 neighbours (up, down, right, left, in front, behind). As mentioned
before, while calculating the dipole moment of a chosen protein, only these are taken
into consideration, although other proteins which are farther away may also have an
effect on its dipole moment. We used this simplification because of 2 reasons. Firstly,
it would greatly increase the simulation time, and secondly the effect of a protein on
another one is reduced in proportion to the third power of the distance between them.
If greater precision is needed, we can easily implement the use of more neighbouring
proteins into the program, but we decided that the 6 closest neighbours are enough
to achieve representative results. In practice it would be dangerous for all proteins to
affect each other, because the structure might not work as intended, so some kind of
insulation should be used to shield the chosen molecule or structure from unwanted
effects.

5.2.2 Searching Algorithm related problems

As we mentioned before the Searching Algorithm has a couple of issues. The main
problem is that the algorithm doesn’t find exactly the minimum number of proteins
needed to perform the tasks of a certain logic function. We present some ways of
improvement in this regard in Section 5.4. As in other simulation processes, the main
factor to determine the running time is precision. The more precise we want to be, the
more time the algorithm will take to finish.

Another issue is with the scalability of the algorithm. While adding more outputs
doesn’t significantly increase the running time, more inputs certainly does. For each
consecutive input the algorithm has to run roughly, the number of different electric fields
times more. Thus with a boundary of -10 to 10 kcal/(molÅe), each consecutive input
multiplies the checking time of one structure by about 20. We can play around with this
boundary, but setting it lower might result in more proteins needed for the same logic
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function, since the higher the boundary is, the more possibilities there are to find the
logic function for the same structure. Again we arrive at a decision between running
time and minimising the number of proteins needed for the same logic function. Even
though lowering the boundary decreases the running time, with more and more inputs
and outputs added, because of the nature of the algorithm, it will eventually reach
running times of years for complex logic functions.

We conclude that this algorithm is only suitable to search for smaller structure, and
less complex logic functions. A different approach for the entire problem would be
needed if finding many input, many output logic functions is the goal.

5.3 Improving the Simulation

In this subsection we discuss some improvements that we have in mind for the program,
regarding an algorithmic and an optimizing aspect as well. We also mention some
modules with which the program could be expanded.

5.3.1 Programming improvements

First of all some graphical improvements could be made to the program. An issue right
now is when all 46 656 boxes are loaded the program only runs with about 1 frame per
second. Since the coordinates are in order we don’t really need to see all these boxes
in order to build structures, so we don’t consider this a major issue. Still it could be
improved by using multiple cpu cores or using the gpu more heavily to handle the
drawing of so many boxes. We tested the program for up to 1000 boxes, and it still ran
with 60 fps.

Currently the program can only be operated with keyboard inputs, but there are
libraries for freeglut with which textboxes and buttons could be implemented. This
would make the program more user friendly, making it easier to operate and navigate.

Furthermore the program’s scalability could be improved by specifying variables
that the user can modify. For example the number of boxes/proteins that can be used, or
the precision with which the Searching Algorithm operates, in order to decrease running
time. The number of steps used in the simulation could also be reduced, or optimized
in such a way that the algorithm adapts to the slope of the dipole moment function.
If there aren’t any abrupt changes less integration steps can give a pretty exact result
as well. Lastly when the simulation runs instead of writing to a file at each step, we
could store the simulation results in variables, and only write them out when the user
needs them. These options and improvements are beneficial since they could further
cut down the running time of the simulation and the Searching Algorithm.

Currently there is an animation function in the program but it isn’t used. With
animation we could make visual descriptions of how the signals are transferred through
the protein structures. We could also show how the protein’s size changes when it is
affected by an electric field. With animation we could simulate the real world behaviour
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of the proteins when interacting with each other, using simplified equations, in order
to be able to run it in real time.

5.3.2 Further modules

Dronpa among other properties is photoswitchable [11]. This means that with well
defined electromagnetic radiation frequencies the protein can be switched between
2 forms [21]. Digital signal propagation and basic gates can be realized as well. The
positives of photon-coupling are that it is more powerful, and it depends less on distance
that coulomb-coupling. Adding a photon-coupling module to our program wouldn’t
be a complicated task, since we already have the graphical interface. The equations
describing the behaviour of Dronpa when affected by different radiation frequencies
could be implemented fairly easily. All the current framework for the simulation can
be reused, with some minor alterations, thus the program could also be usable for
photon-coupling simulations.

The mathematical model which we implemented in the program and based the
differential equations on is not specific to Dronpa. It can be used with some alterations
to simulate other proteins as well, which have similar or even better qualities than
Dronpa. This means that the framework and software we developed can be used for
several proteins, and the only way in that it is specific to Dronpa is the constants and
actual equations used.

5.4 Improving the Searching Algorithm

As mentioned in Section 3.5.4, the program does not find every possible molecular
structure which is needed. In this section we are going to discuss ways for improve-
ment, as well as cover some other parts where the searching algorithm could be further
improved.

5.4.1 Improving the structure finding algorithm

We know that the searching algorithm has flaws as mentioned in Section 3.5.4, so we
decided to run some tests, and improve our building algorithm, when the simulation
works as expected. By the time we finished several test runs, we have encountered
another problem, which was not with the program, but our limitation of resources. The
simulation time was too long, even with the missing structures, thus we decided to
leave the program the way it is for the time being, because even if it doesn’t test every
possibility, it still did found the basic logic gates.

However even if we did not implement the improved structure-building algorithm,
we still managed to come up with a solution to find every possible molecular structure.
We made the choice not to complicate the existing problem with other functions, but
make a separate smaller program, its only purpose being, to look for structures. This
way it would be even more convenient, because the building needs to be done only
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once, and not each time a simulation is run. The second program finds every structure,
writes them out in a data file, thus the main program just has to open the file, load the
structures and try them out, one after another, until it finds a working arrangement.

Let’s say that the number of molecules we want to work with is n. In three dimen-
sions they can be placed in a cube, with n molecules in each direction, an n ∗ n ∗ n-sized

grid. The number of combinations to place n molecules in n3 place is
(
n3

n

)
. The al-

gorithm handles the cube as a queue, by assigning a number to every place of the grid.
After the empty n3-sized array is made, the program has to fill it with the molecules.
The program places the first molecule to the first place, then the next one to the next
place, and so on, until the last one. Then it simply pushes the last molecule to the next
place, and repeats this process until it is in the last place. If the program reaches this
point, it then puts the previous molecule one place away than it was before and repeats
this operation, until there are no more empty places after the molecules.

Another key feature is to write the structures to a file during the process, so after it is
done, the main program can read it, and run the simulations. The main issue with this
program was that, because n is a variable, the program had to be made with recursion,
so the filling function had to call itself.

5.4.2 Further ides to the structure finding algorithm

This smaller program was not further optimised, since we decided not to use it in the
end, because of the reasons written in Section 5.4.1. That being said we have several
ideas, if the resources are available to run simulations on more structures. Furthermore
we will optimise this program, to filter the structures. In the following lines a brief
description of these methods is given.

The simplest way to see if two structure are the same, is translation. We have
to subtract the same number from every molecule’s every coordinate, until they are
non-negative. This way we can filter structures in which the molecules are in the same
arrangement and in the same orientation. The next problem is with the structures
which are in the same arrangement, but in different orientation. This can be solved, by
rotating the whole structures around the three axes, and getting their reflection through
the three planes, defined by two axes.

The last case is not a geometrical problem, like the ones above, but the fact, that
there are structures, which are not identical, but the simulation could consider them as
such. For example knowing that if there are 2 structures made of the same number of
molecules, but in the first the molecules are lined up one after another, and in the second
one, they are in an ’L’-shape. This should be a different solution, but in the simulation
the only thing that matters is the adjacent molecules, so it would give the same result
in function. Therefore in terms of simulation results, the example mentioned above
shall not be tested with both of the structures, but only with one of them, to reduce the
searching algorithm’s duration.
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5.4.3 Further improvements to the Searching Algorithm

Minor improvements can be made to the txt file printed when the Searching Algorithm
finds the result. One such improvement is the specifying of the order in which the
electric fields are applied to the input proteins. This feature would reduce manual sim-
ulation checking times, and could be easily implemented. Another minor improvement
could be made to show which output channel corresponds to which output protein.
Currently determining this can only be done after the results are checked manually by
simulation.

An annoying issue that we found with the algorithm is that after it finds the structure
and prints it out into a file, we have to manually check if the structure actually realizes
the desired logic function. A simple idea that we have could automate this part as
well. A small algorithm would take the file generated by the Searching Algorithm, and
perform the simulations that we perform manually based on this file. This would also
create the excel files generated in the simulation part of the program, thus we can easily
create the data and graphs we need, for proving that the Searching Algorithm did indeed
find the desired structure. This is an easy to implement feature that would greatly
decrease the time needed for checking the results.

Other ideas that we have could decrease the running time of the Searching Algorithm,
by further optimizing the process. One such thing that we could improve is to decrease
the number of input protein configurations that are tried out, but identical in function
for the specific structure. For example let’s say we have a structure consisting of 3
proteins place linearly. We can see that putting the 2 inputs at one and or the other
will yield the same configuration, but still the algorithm in its current state will try
out both. Another improvement would be to further increase the number of checks
that are implemented in the algorithm. These checks are placed at various parts of
the algorithm, using some parameters and deciding whether moving on to the next
configuration is possible, thus terminating a for loop faster. One such feature, that we
already implemented is the following: After trying out one row of the logic function’s
table for the current configuration, if there were no viable electric field values, which
would yield the right output, trying out further rows would be pointless, thus the
algorithm will skip to the next input protein configuration.

We already described how hard it is to create an algorithm that only checks the
structures needed, so until that problem is not resolved these ideas could prove useful
to somewhat lessen the running time of the Searching Algorithm. However these im-
provements prove to be a greater challenge than expected, since they also require the
algorithm to be more intelligent.
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6 Conclusion

With the help of theoretical findings discussed in the first 2 chapters of the document-
ation we have developed and presented a simulation program which can be used to
simulate coulomb-coupled protein structures. With the help of a graphical user inter-
face we’ve shown how easy it is to build molecular structures, and run simulations on
them. Visually interesting design and scalability of the simulation software were two
important aspects that we took into consideration. We’ve also shown how molecular
structure finding algorithms can be automated for specific logic functions, and how
these could be further improved. We presented the simulation results and the find-
ings of the logic gates, and some logic functions, comparing the protein structures to
transistor electronic circuits. Challenges and difficulties were overcome, problems and
issues were presented, and improvements and future plans were discussed. All in all,
we showed how Dronpa and other coulomb-coupled proteins can replace the mod-
ern day transistor, presenting the molecular structures that achieve some of the most
basic logic functions, and gave a framework software which can be used for further
simulation and building of such protein structures.

So far everything that we’ve discussed and shown are purely theoretical simula-
tions. A very important subject would be to try out these simulations in practice.
Unfortunately we don’t have the resources or knowledge necessary to conduct such
research, but nevertheless it would be very important to further prove the theoretical
findings of our program. The engineering involved in creating the molecular struc-
tures given is very complex and of high level, but we urge scientists to try out such
experiments in practice, because the end goal is to make physical real-world molecular
structures working as computing architectures.
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