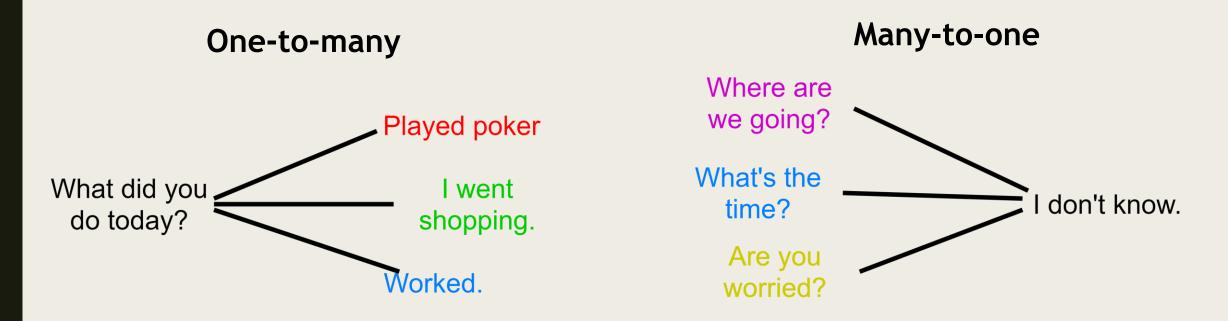
IMPROVING NEURAL CONVERSATIONAL MODELS WITH ENTROPY-BASED DATA FILTERING


Richard Csaky¹, Patrik Purgai¹, Gabor Recski^{1,2} ¹Budapest University of Technology ²Sclable AI

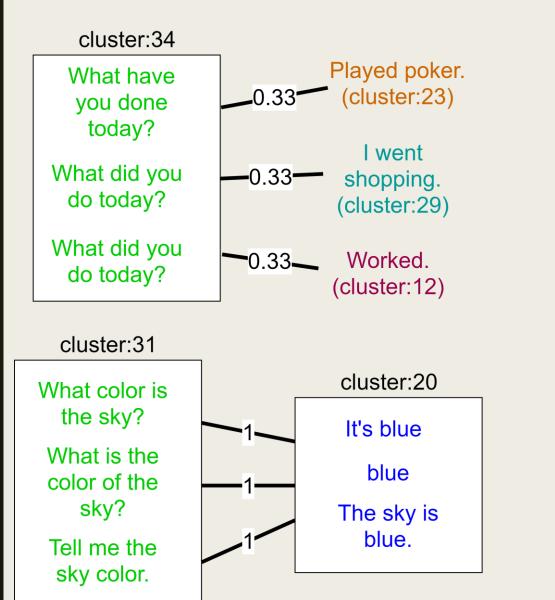
Introduction

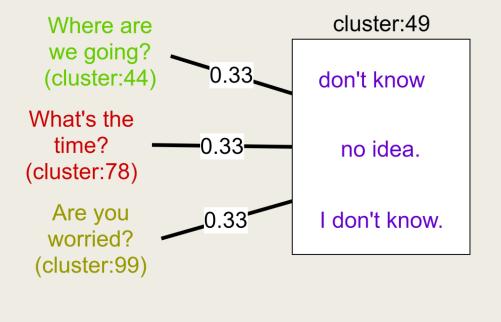
- Takeaways
 - Better responses by filtering training data
 - **Overfitting** = better on automatic **metrics**

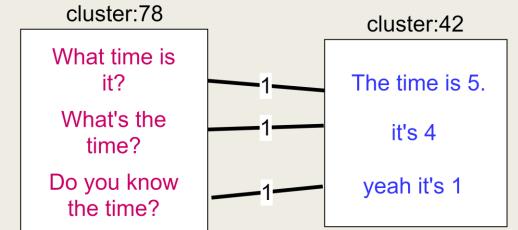
Problem formulation

Previous approaches:

- Feeding extra information to dialog models [1]
- Augmenting the model or decoding process [2]
- Modifying the loss function [3]

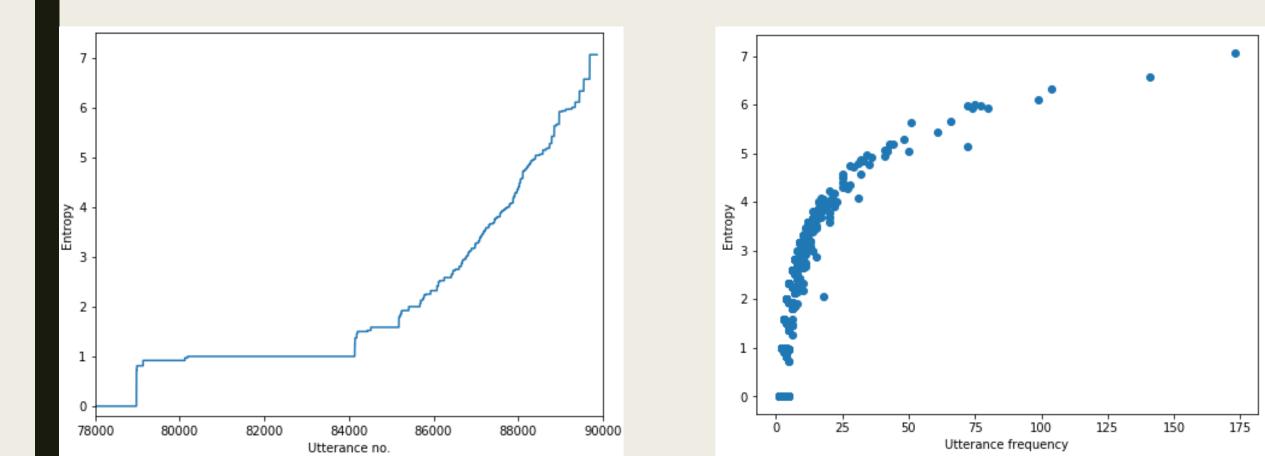

Methods (Identity)

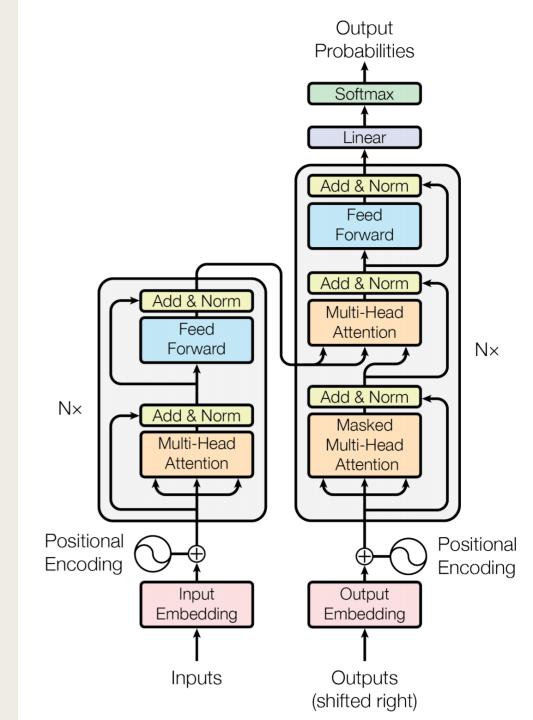

- Filter high-entropy utterances
- 3 filtering ways: SOURCE, TARGET, BOTH



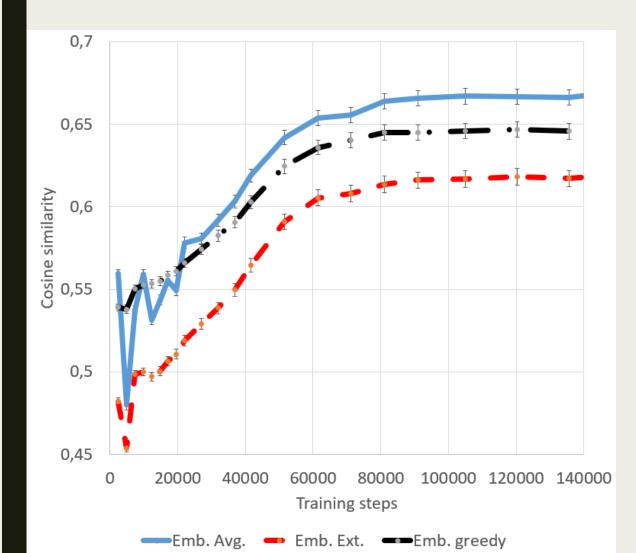
Methods (Clustering)

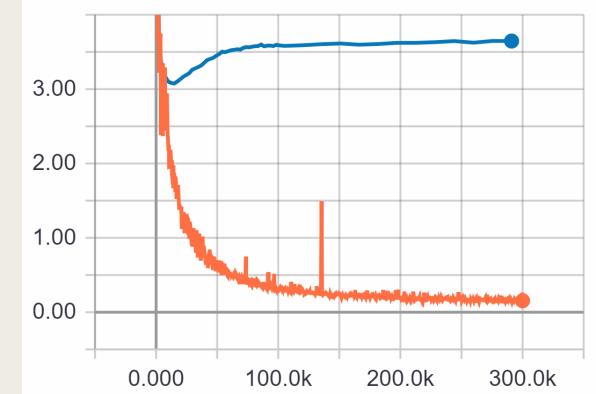
- SENT2VEC [4] and AVG-EMBEDDING [5]
- Mean Shift clustering algorithm [6]




Data DailyDialog (~90.000 pairs) [7]

- Remove 5-15% of utterances
- High entropy utterances:
 - yes | thank you | why? | ok | what do you mean? | sure




Setup

- Response length
- Word / utterance entropy [8]
- KL-divergence
- Embedding metrics [9]
- Coherence [10]
- Distinct-1, -2 [11]
- BLEU-1, -2, -3, -4 [12]

Evaluation Metrics

Results (at loss minimum)

		U	H^u_w	H^b_w	H_u^u	H_u^b	D_{kl}^u	D_{kl}^b	AVG	EXT	GRE	СОН	d 1	d2	b1	b2	b3	b4
TR	F	8.6	7.30	12.2	63.6	93	.330	.85	.540	.497	.552	.538	.0290	.149	.142	.135	.130	.119
	В	9.8	7.44	12.3	71.9	105	.315	.77	.559	.506	.555	.572	.0247	.138	.157	.151	.147	.136
	Т	10.9	7.67	12.7	83.2	121	.286	.72	.570	.507	.554	.584	.0266	.150	.161	.159	.156	.146
	S	9.4	7.19	11.9	66.4	98	.462	1.08	.540	.495	.553	.538	.0262	.130	.139	.133	.128	.117
	В	7.9	7.25	12.0	57.7	83	.447	1.05	.524	.486	.548	.524	.0283	.132	.128	.121	.115	.105
AE	Т	8.6	7.26	12.1	61.4	90	.425	1.12	.526	.492	.548	.529	.0236	.115	.133	.127	.121	.111
	S	9.0	7.21	11.9	65.1	95	.496	1.16	.536	.490	.548	.538	.0232	.109	.134	.130	.126	.116
	В	10.0	7.40	12.3	72.6	108	.383	.97	.544	.497	.549	.550	.0257	.131	.145	.142	.138	.128
SC	Т	11.2	7.49	12.4	82.2	122	.391	.97	.565	.500	.552	.572	.0250	.132	.153	.153	.152	.142
_	S	11.1	7.15	11.9	74.4	114	.534	1.27	.546	.501	.560	.544	.0213	.102	.144	.139	.135	.125

Results (after overfitting)

		U	H^u_w	H^b_w	H_u^u	H_u^b	D_{kl}^u	D_{kl}^b	AVG	EXT	GRE	СОН	d 1	d2	b1	b2	b3	b4
TRF		11.5	7.98	13.4	95	142	.0360	.182	.655	.607	.640	.567	.0465	.297	.333	.333	.328	.315
	В	13.1	8.08	13.6	107	162	.0473	.210	.668	.608	.638	.598	.0410	.275	.334	.340	.339	.328
ID	Т	12.2	8.04	13.6	100	150	.0335	.181	.665	.610	.640	.589	.0438	.289	.338	.341	.339	.328
	S	12.3	7.99	13.5	101	153	.0406	.187	.662	.610	.641	.578	.0444	.286	.339	.342	.338	.326
	В	11.9	7.98	13.5	98	147	.0395	.197	.649	.600	.628	.574	.0434	.286	.318	.321	.318	.306
AF	Т	12.5	7.99	13.5	102	155	.0436	.204	.656	.602	.634	.580	.0423	.279	.324	.327	.325	.313
	S	12.1	7.93	13.4	99	148	.0368	.186	.658	.605	.636	.578	.0425	.278	.325	.328	.324	.311
	В	12.8	8.07	13.6	105	159	.0461	.209	.655	.600	.629	.583	.0435	.282	.322	.328	.327	.316
SC	Т	13.0	8.06	13.6	107	162	.0477	.215	.657	.602	.632	.585	.0425	.279	.324	.330	.329	.318
	S	12.1	7.96	13.4	100	150	.0353	.183	.657	.606	.638	.576	.0443	.286	.331	.333	.329	.317

Results (other datasets)

Cornell-Movie Dialog Corpus

		U	H^u_w	H^b_w	H^u_u	H_u^b	D^u_{kl}	D^b_{kl}	AVG	EXT	GRE	СОН	d 1	d2	b1	b2	b3	b4
TRF		8.1	6.55	10.4	54	75	2.29	3.40	.667	.451	.635	.671	4.7e-4	1.0e-3	.108	.120	.120	.112
ID	В	7.4	6.67	10.8	50	69	1.96	2.91	.627	.455	.633	.637	2.1e-3	7.7e-3	.106	.113	.111	.103
Ι	Т	12.0	6.44	10.4	74	106	2.53	3.79	.646	.456	.637	.651	9.8e-4	3.2e-3	.108	.123	.125	.118
							Т	witt	ord	lata	acot	-						
							I	WILL		Jaco	3501	-						
		T T	<u>11</u> u	11 ⁶ 11		D^{u}	D^b	ANG	DVT	CDE	COLL	41	40	h 1	b2	h 2	, 1	h 1
		U	H^u_w 1	H^b_w H	$\begin{bmatrix} u \\ u \end{bmatrix} H_u^b$	D_{kl}^u	D_{kl}^b	AVG	EXT	GRE	СОН	d1	d2	b1	02	b3		b4
TR	F	20.6	6.89 1	1 1.4 12	21 177	2.28	3.40	.643	.395	.591	.659	2.1e-	3 6.2e-3	3 .0519	.066	6.0	715	.0693
ID	В	20.3	6.95 1	1.4 11	9 171	2.36	3.41	.657	.394	.595	.673	1.2e-	3 3.4e-3	.0563	.073	6.0	795	.0774
Π	Т	29.0	6.48 1	l0.7 1 5	57 226	2.68	3.69	.644	.403	.602	.660	1.4e-	3 4.6e-3	3 . 0550	.074	80. 0	819 .	.0810

Conclusion

Better responses by filtering training data
 Overfitting = better on automatic metrics

Thanks for your attention!

- github.com/ricsinaruto/NeuralChatbots-DataFiltering
 - code/utils/filtering_demo.ipynb
- github.com/ricsinaruto/dialog-eval
- ricsinaruto.github.io
 - Paper, Poster, Blog post, Slides

References

[1] Jiwei Li, Michel Galley, Chris Brockett, Georgios P Spithourakis, Jianfeng Gao, and Bill Dolan. 2016. A persona-based neural conversation model.
[2] Yuanlong Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and Ray Kurzweil. 2017. Generating high-quality and informative conversation responses with sequence-to-sequence models.
[3] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A diversity-promoting objective function for neural conversation models.
[4] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. 2018. Unsupervised learning of sentence embeddings using compositional n-gram features.
[5] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simple but tough-to-beat baseline for sentence embeddings.
[6] Keinosuke Fukunaga and Larry Hostetler. 1975. The estimation of the gradient of a density function, with applications in pattern recognition.
[7] Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. 2017. Dailydialog: A manually labelled multi-turn dialogue dataset.
[8] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron C Courville, and Yoshua Bengio. 2017. A hierarchical latent variable encoder-decoder model for generating dialogues.
[9] Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How not to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation.
[10] Xinnuo Xu, Ondrej Dusek, Ioanis Konstas, and Verena Rieser. 2018. Better conversations by modeling, filtering, and optimizing for coherence and diversity.
[11] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A diversity-promoting objective function for neural conversation models.
[12] Kishore Papineni, Salim Roukos, Todd Ward, and WeiJing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation