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BACKGROUND
•Between-subject variability of neuroimaging data limits the application of a single, shared
decoding model across subjects [Olivetti et al., 2014] (Figure 1, right).

• Previous approaches include learnable affine transformations between subjects
[Elango et al., 2017] and finetuning on target subjects [Cooney et al., 2019].
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Figure 1: Subject-level (SL) and group-level (GL) modelling. Left: A separate model is trained
on each subject. Right: A single, shared model is trained on the trials (t) of all subjects (s).
Canweuse deep learning to improve performance by using a shared
model that generalises across subjects?

METHODS
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Figure 2: Group-level WaveNet [van den Oord et al., 2016] Classifier with subject embed-
dings. Dashes show differences between subject and group-level models. Embeddings of
size 10 are concatenated with input trials to provide information about which trial is coming
from which of the 15 subjects, tackling between-subject variability. The model should learn
general features across subjects, and adapt its internal representations for each subject.
Model analysis
• Spatial and temporal information analysed with permutation feature importance (PFI), by
permuting across timesteps (for each channel) and across channels (for each timestep).

• PFI with kernel output deviation as the measure to uncover spatial, temporal, and spectral
sensitivity of individual kernels.

• In spectral PFI, frequency content is disrupted in specific bands by shuffling Fourier coeffi-
cients of Fourier-transformed input examples.

Experimental setup
•Data: task-Magnetoencephalography (MEG), where 15 subjects view 118 different images
with each image viewed 30 times [Cichy et al., 2016].

•Multiclass decoding done on the 1-second epoch post-stimulus using all 306 channels.
• Linear (identity activation function) and nonlinear versions of subject-level and group-level
models are compared.

RESULTS
Groupmodelswith subject embedding achieve similar accuracy to subject-levelmodels
• At the subject level (SL), linear models are better than nonlinear.
• A group-level model without subject embeddings is much worse than SL models.
• Subject embeddings help a lot, closing the gap with SL models. Nonlinearity is crucial.
• Finetuning the group model on each subject separately surpasses SL models.

linear
subject

nonlinear
subject

linear
group

nonlinear
group

linear
group-emb

nonlinear
group-emb

nonlinear
group-emb
finetuned

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Va
lid

at
io

n 
ac

cu
ra

cy

chance

subject models
group models

group models
with embedding

*** ****
****

*
**

Figure 3: Subject-level and group-level WaveNet Classifier on the validation set of each sub-
ject. Train to validation ratio is 4:1 for each subject and class. nonlinear group-emb
finetuned separately on each subject.
Group models generalise much better to new subjects than subject-level models
•Group-level (GL) models trained on 14 subjects are above chance on the left-out subject.
• Finetuned GL models better than training from scratch when using <70% of the left-out
subject’s train set.

Figure 4. Left: Generalisation and finetuning (amount on horizontal axis) on left-out subjects
(repeated across all subjects). subject is trained from scratch, while group-emb and group are
initialised with a nonlinear GL model trained on the 14 other subjects.
Right: Temporal (accuracy loss w.r.t. trial timing) and spatial (accuracy loss w.r.t. channels) PFI
for the nonlinear group-emb model.
Neuroscientific insights can be gained from deep learning models
• Information content (Figure 4, right) and kernel sensitivity (Figure 5, middle and left) peak
at 100-150 ms post-stimulus, and within channels over visual areas.

•Kernel spectral sensitivity (Figure 5, right) coincides with MEG PSD (1/f, 10 Hz peak).
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Figure 5. Spatial (left), temporal (middle), and spectral (right) PFI across nonlinear group-emb
kernels within 3 layers (rows). Kernel output deviation w.r.t. spatial location (left, red shading),
trial timing (middle), frequency (right). For temporal and spectral PFI individual kernels are lines.
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