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Decoding Across Subjects with RESULTS
Deep Transfer Learning

Group models with subject embedding achieve similar accuracy to subject-level models
Richard Csaky1'2'5, Mats W.J. van Es'?, Oiwi Parker Jones?>*, Mark Woolrich'+? e At the subject level (SL), linear models are better than nonlinear.

e A group-level model without subject embeddings is much worse than SL models.
e Subject embeddings help a lot, closing the gap with SL models. Nonlinearity is crucial.
e Finetuning the group model on each subject separately surpasses SL models.
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e Between-subject variability of neuroimaging data limits the application of a single, shared | Horokx |
decoding model across subjects [Olivetti et al., 2014] (Figure 1, right). § 1.0- . **_* . e
e Previous approaches include Ilearnable affine transformations between subjects 0 9 sublect models group models %?ﬁ%rwgg;ﬁng
[Elango et al., 2017] and finetuning on target subjects [Cooney et al., 2019]. o
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Is— i S—— Group models generalise much better to new subjects than subject-level models
Figure 1: Subject-level (SL) and group-level (GL) modelling. Left: A separate model is trainec e Group-level (GL) models trained on 14 subjects are above chance on the left-out subject.
on each subject. Right: A single, shared model is trained on the trials (t) of all subjects (s). e Finetuned GL models better than training from scratch when using <70% of the left-out

subject’s train set.

Can we use deep learning to improve performance by using a shared
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! ! Figure 4. Left: Generalisation and finetuning (amount on horizontal axis) on left-out subjects

subject 1 (repeated across all subjects). subject is trained from scratch, while group-emb and group are
SRl 1510, initialised with a nonlinear GL model trained on the 14 other subjects.
Right: Temporal (accuracy loss w.r.t. trial timing) and spatial (accuracy loss w.r.t. channels) PFI

Figure 2: Group-level WaveNet [van den Oord et al., 2016] Classifier with subject embed-
dings. Dashes show differences between subject and group-level models. Embeddings of
size 10 are concatenated with input trials to provide information about which trial is coming
from which of the 15 subjects, tackling between-subject variability. The model should learn
general features across subjects, and adapt its internal representations for each subject.

for the nonlinear group-emb model.

Neuroscientific insights can be gained from deep learning models
e Information content (Figure 4, right) and kernel sensitivity (Figure 5, middle and left) peak
at 100-150 ms post-stimulus, and within channels over visual areas.

Model analysis e Kernel spectral sensitivity (Figure 5, right) coincides with MEG PSD (1/f, 10 Hz peak).

e Spatial and temporal information analysed with permutation feature importance (PFl), by Kernel 0 Kernel 1 Kernel 2
permuting across timesteps (for each channel) and across channels (for each timestep). A e '

e PFl with kernel output deviation as the measure to uncover spatial, temporal, and spectral
sensitivity of individual kernels.

¢ |n spectral PFI, frequency content is disrupted in specific bands by shuffling Fourier coeffi-
cients of Fourier-transformed input examples.
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Experimental setup
e Data: task-Magnetoencephalography (MEG), where 15 subjects view 118 different images
with each image viewed 30 times [Cichy et al., 2016].

e Multiclass decoding done on the 1-second epoch post-stimulus using all 306 channels. Sigure 5. Spatial (left), temporal (middle), and spectral (right) PFl across nonlinear group-emb
e Linear (identity activation function) and nonlinear versions of subject-level and group-level kernels within 3 layers (rows). Kernel output deviation w.r.t. spatial location (left, red shading),
models are compared. trial timing (middle), frequency (right). For temporal and spectral PFl individual kernels are lines.
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