

Inner Speech Decoding from EEG and MEG

Richard Csaky, Mats W.J. van Es, Oiwi Parker Jones, Mark Woolrich *University of Oxford*

Background

- Limited research on inner speech with non-invasive methods [1]
- Limited analysis of differences between repetitive and self-generated inner speech
- Such research can lead to word-level communication with BCIs [2]

Anything is possibl

Research questions

- 1. What inner speech decoding performance can be achieved in EEG and MEG with a large number of per-participant trials?
- 2. Can we transfer decoders across sessions and tasks?
- 3. What are the differences between repetitive and self-generated inner speech?

Data Collection

- 5 words:
 - hungry, tired, thirsty, toilet, pain

4 consecutive 1-second trials

Version 1	EEG	MEG
P1 sessions	6	6
P2 sessions	2	2
P3 sessions	2	2

Version 2	EEG	MEG
P1 sessions	1	1
P2 sessions	1	1
P3 sessions	10	1

Total trials	EEG	MEG
Inner speech	20K	10K
Silent reading	9K	7.5K

Silent reading task only

Version 3	EEG	MEG
P1 sessions	1	1
P2 sessions	1	1
P3 sessions	1	1

EEG inner speech data analysis

Evoked response across sessions

Evoked response across channels

Separating visual and language activity

cross cues only

cross cues with inner speech

1 cross cue and4x inner speech

Per-word evoked response

t-SNE projection of inner speech trial covariances

Word labeling

Decoding results

Preprocessing

- 1. Bandpass filter between 1-40Hz
- 2. Bad segment and channel removal
- 3. ICA with 64 components for MEG only

MEG inner speech decoding at chance level

- Models
 - Fully-connected NN
 - CNN
 - LDA
 - Logistic Regression
- Features
 - Channel selection
 - Using the covariance matrix of the trial
 - Concatenating the 4 consecutive trials or averaging them
- Per-session decoding or using trials from all sessions

Inner speech above chance in 3/10 EEG sessions

- Method 1: 25% accuracy
 - covariance matrix features + LDA
- Method 2: 33% accuracy
 - single LDA model trained on all 3 sessions
 - concatenating the 4 consecutive trials
 - subtracting session-level evoked response and covariance from epochs
- Additional methods tried
 - Trial-level normalization; temporal alignment of trials; denoising with PCA, Xdawn clas-sifier with riemannian features; baseline correction; laplace denoising

Silent reading decoding above chance in MEG and EEG

- Per-participant 2-layer linear neural network
- 1-second epoch flattened to a feature vector

	MEG version 1	MEG version 3	EEG version 3
Validation accuracy	39.33%	35%	30%

Closed-loop EMG silent speech prototype

Thank you!

References

- [1] Panachakel, J.T. and Ramakrishnan, A.G., Decoding covert speech from EEG-a comprehensive review. Frontiers in Neuroscience, 2021
- [2] Metzger, S.L., Liu, J.R., Moses, D.A., Dougherty, M.E., Seaton, M.P., Littlejohn, K.T., Chartier, J., Anumanchipalli, G.K., Tu-Chan, A., Ganguly, K. and Chang, E.F. Generalizable spelling using a speech neuroprosthesis in an individual with severe limb and vocal paralysis. *Nature Communications*, 13(1), pp.1-15, 2022

Per-word evoked response

Evoked responses across sessions

Temporal evoked activity

Separating visual and language activity

cross cues only

cross cues with inner speech

1 cross cue and4x inner speech

Evoked response

